org.apache.spark.ml.clustering.ClusteringSummary.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.clustering
import org.apache.spark.annotation.Since
import org.apache.spark.sql.{DataFrame, Row}
/**
* Summary of clustering algorithms.
*
* @param predictions `DataFrame` produced by model.transform().
* @param predictionCol Name for column of predicted clusters in `predictions`.
* @param featuresCol Name for column of features in `predictions`.
* @param k Number of clusters.
* @param numIter Number of iterations.
*/
class ClusteringSummary private[clustering] (
@transient val predictions: DataFrame,
val predictionCol: String,
val featuresCol: String,
val k: Int,
@Since("2.4.0") val numIter: Int) extends Serializable {
/**
* Cluster centers of the transformed data.
*/
@transient lazy val cluster: DataFrame = predictions.select(predictionCol)
/**
* Size of (number of data points in) each cluster.
*/
lazy val clusterSizes: Array[Long] = {
val sizes = Array.ofDim[Long](k)
cluster.groupBy(predictionCol).count().select(predictionCol, "count").collect().foreach {
case Row(cluster: Int, count: Long) => sizes(cluster) = count
}
sizes
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy