org.apache.spark.ml.feature.MaxAbsScaler.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.feature
import org.apache.hadoop.fs.Path
import org.apache.spark.annotation.Since
import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg.{Vector, Vectors, VectorUDT}
import org.apache.spark.ml.param.{ParamMap, Params}
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
import org.apache.spark.ml.stat.Summarizer
import org.apache.spark.ml.util._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructField, StructType}
/**
* Params for [[MaxAbsScaler]] and [[MaxAbsScalerModel]].
*/
private[feature] trait MaxAbsScalerParams extends Params with HasInputCol with HasOutputCol {
/** Validates and transforms the input schema. */
protected def validateAndTransformSchema(schema: StructType): StructType = {
SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
require(!schema.fieldNames.contains($(outputCol)),
s"Output column ${$(outputCol)} already exists.")
val outputFields = schema.fields :+ StructField($(outputCol), new VectorUDT, false)
StructType(outputFields)
}
}
/**
* Rescale each feature individually to range [-1, 1] by dividing through the largest maximum
* absolute value in each feature. It does not shift/center the data, and thus does not destroy
* any sparsity.
*/
@Since("2.0.0")
class MaxAbsScaler @Since("2.0.0") (@Since("2.0.0") override val uid: String)
extends Estimator[MaxAbsScalerModel] with MaxAbsScalerParams with DefaultParamsWritable {
@Since("2.0.0")
def this() = this(Identifiable.randomUID("maxAbsScal"))
/** @group setParam */
@Since("2.0.0")
def setInputCol(value: String): this.type = set(inputCol, value)
/** @group setParam */
@Since("2.0.0")
def setOutputCol(value: String): this.type = set(outputCol, value)
@Since("2.0.0")
override def fit(dataset: Dataset[_]): MaxAbsScalerModel = {
transformSchema(dataset.schema, logging = true)
val Row(max: Vector, min: Vector) = dataset
.select(Summarizer.metrics("max", "min").summary(col($(inputCol))).as("summary"))
.select("summary.max", "summary.min")
.first()
val maxAbs = Array.tabulate(max.size) { i => math.max(math.abs(min(i)), math.abs(max(i))) }
copyValues(new MaxAbsScalerModel(uid, Vectors.dense(maxAbs).compressed).setParent(this))
}
@Since("2.0.0")
override def transformSchema(schema: StructType): StructType = {
validateAndTransformSchema(schema)
}
@Since("2.0.0")
override def copy(extra: ParamMap): MaxAbsScaler = defaultCopy(extra)
}
@Since("2.0.0")
object MaxAbsScaler extends DefaultParamsReadable[MaxAbsScaler] {
@Since("2.0.0")
override def load(path: String): MaxAbsScaler = super.load(path)
}
/**
* Model fitted by [[MaxAbsScaler]].
*
*/
@Since("2.0.0")
class MaxAbsScalerModel private[ml] (
@Since("2.0.0") override val uid: String,
@Since("2.0.0") val maxAbs: Vector)
extends Model[MaxAbsScalerModel] with MaxAbsScalerParams with MLWritable {
import MaxAbsScalerModel._
/** @group setParam */
@Since("2.0.0")
def setInputCol(value: String): this.type = set(inputCol, value)
/** @group setParam */
@Since("2.0.0")
def setOutputCol(value: String): this.type = set(outputCol, value)
@Since("2.0.0")
override def transform(dataset: Dataset[_]): DataFrame = {
val outputSchema = transformSchema(dataset.schema, logging = true)
val scale = maxAbs.toArray.map { v => if (v == 0) 1.0 else 1 / v }
val func = StandardScalerModel.getTransformFunc(
Array.empty, scale, false, true)
val transformer = udf(func)
dataset.withColumn($(outputCol), transformer(col($(inputCol))),
outputSchema($(outputCol)).metadata)
}
@Since("2.0.0")
override def transformSchema(schema: StructType): StructType = {
var outputSchema = validateAndTransformSchema(schema)
if ($(outputCol).nonEmpty) {
outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema,
$(outputCol), maxAbs.size)
}
outputSchema
}
@Since("2.0.0")
override def copy(extra: ParamMap): MaxAbsScalerModel = {
val copied = new MaxAbsScalerModel(uid, maxAbs)
copyValues(copied, extra).setParent(parent)
}
@Since("1.6.0")
override def write: MLWriter = new MaxAbsScalerModelWriter(this)
@Since("3.0.0")
override def toString: String = {
s"MaxAbsScalerModel: uid=$uid, numFeatures=${maxAbs.size}"
}
}
@Since("2.0.0")
object MaxAbsScalerModel extends MLReadable[MaxAbsScalerModel] {
private[MaxAbsScalerModel]
class MaxAbsScalerModelWriter(instance: MaxAbsScalerModel) extends MLWriter {
private case class Data(maxAbs: Vector)
override protected def saveImpl(path: String): Unit = {
DefaultParamsWriter.saveMetadata(instance, path, sc)
val data = new Data(instance.maxAbs)
val dataPath = new Path(path, "data").toString
sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath)
}
}
private class MaxAbsScalerModelReader extends MLReader[MaxAbsScalerModel] {
private val className = classOf[MaxAbsScalerModel].getName
override def load(path: String): MaxAbsScalerModel = {
val metadata = DefaultParamsReader.loadMetadata(path, sc, className)
val dataPath = new Path(path, "data").toString
val Row(maxAbs: Vector) = sparkSession.read.parquet(dataPath)
.select("maxAbs")
.head()
val model = new MaxAbsScalerModel(metadata.uid, maxAbs)
metadata.getAndSetParams(model)
model
}
}
@Since("2.0.0")
override def read: MLReader[MaxAbsScalerModel] = new MaxAbsScalerModelReader
@Since("2.0.0")
override def load(path: String): MaxAbsScalerModel = super.load(path)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy