All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.ml.feature.MinMaxScaler.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.ml.feature

import org.apache.hadoop.fs.Path

import org.apache.spark.annotation.Since
import org.apache.spark.ml.{Estimator, Model}
import org.apache.spark.ml.linalg.{Vector, Vectors, VectorUDT}
import org.apache.spark.ml.param.{DoubleParam, ParamMap, Params}
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
import org.apache.spark.ml.stat.Summarizer
import org.apache.spark.ml.util._
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructField, StructType}

/**
 * Params for [[MinMaxScaler]] and [[MinMaxScalerModel]].
 */
private[feature] trait MinMaxScalerParams extends Params with HasInputCol with HasOutputCol {

  /**
   * lower bound after transformation, shared by all features
   * Default: 0.0
   * @group param
   */
  val min: DoubleParam = new DoubleParam(this, "min",
    "lower bound of the output feature range")

  /** @group getParam */
  def getMin: Double = $(min)

  /**
   * upper bound after transformation, shared by all features
   * Default: 1.0
   * @group param
   */
  val max: DoubleParam = new DoubleParam(this, "max",
    "upper bound of the output feature range")

  /** @group getParam */
  def getMax: Double = $(max)

  setDefault(min -> 0.0, max -> 1.0)

  /** Validates and transforms the input schema. */
  protected def validateAndTransformSchema(schema: StructType): StructType = {
    require($(min) < $(max), s"The specified min(${$(min)}) is larger or equal to max(${$(max)})")
    SchemaUtils.checkColumnType(schema, $(inputCol), new VectorUDT)
    require(!schema.fieldNames.contains($(outputCol)),
      s"Output column ${$(outputCol)} already exists.")
    val outputFields = schema.fields :+ StructField($(outputCol), new VectorUDT, false)
    StructType(outputFields)
  }

}

/**
 * Rescale each feature individually to a common range [min, max] linearly using column summary
 * statistics, which is also known as min-max normalization or Rescaling. The rescaled value for
 * feature E is calculated as:
 *
 * 
* $$ * Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min * $$ *
* * For the case \(E_{max} == E_{min}\), \(Rescaled(e_i) = 0.5 * (max + min)\). * * @note Since zero values will probably be transformed to non-zero values, output of the * transformer will be DenseVector even for sparse input. */ @Since("1.5.0") class MinMaxScaler @Since("1.5.0") (@Since("1.5.0") override val uid: String) extends Estimator[MinMaxScalerModel] with MinMaxScalerParams with DefaultParamsWritable { @Since("1.5.0") def this() = this(Identifiable.randomUID("minMaxScal")) /** @group setParam */ @Since("1.5.0") def setInputCol(value: String): this.type = set(inputCol, value) /** @group setParam */ @Since("1.5.0") def setOutputCol(value: String): this.type = set(outputCol, value) /** @group setParam */ @Since("1.5.0") def setMin(value: Double): this.type = set(min, value) /** @group setParam */ @Since("1.5.0") def setMax(value: Double): this.type = set(max, value) @Since("2.0.0") override def fit(dataset: Dataset[_]): MinMaxScalerModel = { transformSchema(dataset.schema, logging = true) val Row(max: Vector, min: Vector) = dataset .select(Summarizer.metrics("max", "min").summary(col($(inputCol))).as("summary")) .select("summary.max", "summary.min") .first() copyValues(new MinMaxScalerModel(uid, min.compressed, max.compressed).setParent(this)) } @Since("1.5.0") override def transformSchema(schema: StructType): StructType = { validateAndTransformSchema(schema) } @Since("1.5.0") override def copy(extra: ParamMap): MinMaxScaler = defaultCopy(extra) } @Since("1.6.0") object MinMaxScaler extends DefaultParamsReadable[MinMaxScaler] { @Since("1.6.0") override def load(path: String): MinMaxScaler = super.load(path) } /** * Model fitted by [[MinMaxScaler]]. * * @param originalMin min value for each original column during fitting * @param originalMax max value for each original column during fitting */ @Since("1.5.0") class MinMaxScalerModel private[ml] ( @Since("1.5.0") override val uid: String, @Since("2.0.0") val originalMin: Vector, @Since("2.0.0") val originalMax: Vector) extends Model[MinMaxScalerModel] with MinMaxScalerParams with MLWritable { import MinMaxScalerModel._ /** @group setParam */ @Since("1.5.0") def setInputCol(value: String): this.type = set(inputCol, value) /** @group setParam */ @Since("1.5.0") def setOutputCol(value: String): this.type = set(outputCol, value) /** @group setParam */ @Since("1.5.0") def setMin(value: Double): this.type = set(min, value) /** @group setParam */ @Since("1.5.0") def setMax(value: Double): this.type = set(max, value) @Since("2.0.0") override def transform(dataset: Dataset[_]): DataFrame = { val outputSchema = transformSchema(dataset.schema, logging = true) val numFeatures = originalMax.size val scale = $(max) - $(min) val minValue = $(min) // transformed value for constant cols val constantOutput = ($(min) + $(max)) / 2 val minArray = originalMin.toArray val scaleArray = Array.tabulate(numFeatures) { i => val range = originalMax(i) - originalMin(i) // scaleArray(i) == 0 iff i-th col is constant (range == 0) if (range != 0) scale / range else 0.0 } val transformer = udf { vector: Vector => require(vector.size == numFeatures, s"Number of features must be $numFeatures but got ${vector.size}") // 0 in sparse vector will probably be rescaled to non-zero val values = vector.toArray var i = 0 while (i < numFeatures) { if (!values(i).isNaN) { if (scaleArray(i) != 0) { values(i) = (values(i) - minArray(i)) * scaleArray(i) + minValue } else { // scaleArray(i) == 0 means i-th col is constant values(i) = constantOutput } } i += 1 } Vectors.dense(values).compressed } dataset.withColumn($(outputCol), transformer(col($(inputCol))), outputSchema($(outputCol)).metadata) } @Since("1.5.0") override def transformSchema(schema: StructType): StructType = { var outputSchema = validateAndTransformSchema(schema) if ($(outputCol).nonEmpty) { outputSchema = SchemaUtils.updateAttributeGroupSize(outputSchema, $(outputCol), originalMin.size) } outputSchema } @Since("1.5.0") override def copy(extra: ParamMap): MinMaxScalerModel = { val copied = new MinMaxScalerModel(uid, originalMin, originalMax) copyValues(copied, extra).setParent(parent) } @Since("1.6.0") override def write: MLWriter = new MinMaxScalerModelWriter(this) @Since("3.0.0") override def toString: String = { s"MinMaxScalerModel: uid=$uid, numFeatures=${originalMin.size}, min=${$(min)}, " + s"max=${$(max)}" } } @Since("1.6.0") object MinMaxScalerModel extends MLReadable[MinMaxScalerModel] { private[MinMaxScalerModel] class MinMaxScalerModelWriter(instance: MinMaxScalerModel) extends MLWriter { private case class Data(originalMin: Vector, originalMax: Vector) override protected def saveImpl(path: String): Unit = { DefaultParamsWriter.saveMetadata(instance, path, sc) val data = new Data(instance.originalMin, instance.originalMax) val dataPath = new Path(path, "data").toString sparkSession.createDataFrame(Seq(data)).repartition(1).write.parquet(dataPath) } } private class MinMaxScalerModelReader extends MLReader[MinMaxScalerModel] { private val className = classOf[MinMaxScalerModel].getName override def load(path: String): MinMaxScalerModel = { val metadata = DefaultParamsReader.loadMetadata(path, sc, className) val dataPath = new Path(path, "data").toString val data = sparkSession.read.parquet(dataPath) val Row(originalMin: Vector, originalMax: Vector) = MLUtils.convertVectorColumnsToML(data, "originalMin", "originalMax") .select("originalMin", "originalMax") .head() val model = new MinMaxScalerModel(metadata.uid, originalMin, originalMax) metadata.getAndSetParams(model) model } } @Since("1.6.0") override def read: MLReader[MinMaxScalerModel] = new MinMaxScalerModelReader @Since("1.6.0") override def load(path: String): MinMaxScalerModel = super.load(path) }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy