org.apache.spark.ml.r.FMClassifierWrapper.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.r
import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.classification.{FMClassificationModel, FMClassifier}
import org.apache.spark.ml.feature.{IndexToString, RFormula}
import org.apache.spark.ml.r.RWrapperUtils._
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
private[r] class FMClassifierWrapper private (
val pipeline: PipelineModel,
val features: Array[String],
val labels: Array[String]) extends MLWritable {
import FMClassifierWrapper._
private val fmClassificationModel: FMClassificationModel =
pipeline.stages(1).asInstanceOf[FMClassificationModel]
lazy val rFeatures: Array[String] = if (fmClassificationModel.getFitIntercept) {
Array("(Intercept)") ++ features
} else {
features
}
lazy val rCoefficients: Array[Double] = if (fmClassificationModel.getFitIntercept) {
Array(fmClassificationModel.intercept) ++ fmClassificationModel.linear.toArray
} else {
fmClassificationModel.linear.toArray
}
lazy val rFactors = fmClassificationModel.factors.toArray
lazy val numClasses: Int = fmClassificationModel.numClasses
lazy val numFeatures: Int = fmClassificationModel.numFeatures
lazy val factorSize: Int = fmClassificationModel.getFactorSize
def transform(dataset: Dataset[_]): DataFrame = {
pipeline.transform(dataset)
.drop(PREDICTED_LABEL_INDEX_COL)
.drop(fmClassificationModel.getFeaturesCol)
.drop(fmClassificationModel.getLabelCol)
}
override def write: MLWriter = new FMClassifierWrapper.FMClassifierWrapperWriter(this)
}
private[r] object FMClassifierWrapper
extends MLReadable[FMClassifierWrapper] {
val PREDICTED_LABEL_INDEX_COL = "pred_label_idx"
val PREDICTED_LABEL_COL = "prediction"
def fit( // scalastyle:ignore
data: DataFrame,
formula: String,
factorSize: Int,
fitLinear: Boolean,
regParam: Double,
miniBatchFraction: Double,
initStd: Double,
maxIter: Int,
stepSize: Double,
tol: Double,
solver: String,
seed: String,
thresholds: Array[Double],
handleInvalid: String): FMClassifierWrapper = {
val rFormula = new RFormula()
.setFormula(formula)
.setForceIndexLabel(true)
.setHandleInvalid(handleInvalid)
checkDataColumns(rFormula, data)
val rFormulaModel = rFormula.fit(data)
val fitIntercept = rFormula.hasIntercept
// get labels and feature names from output schema
val (features, labels) = getFeaturesAndLabels(rFormulaModel, data)
// assemble and fit the pipeline
val fmc = new FMClassifier()
.setFactorSize(factorSize)
.setFitIntercept(fitIntercept)
.setFitLinear(fitLinear)
.setRegParam(regParam)
.setMiniBatchFraction(miniBatchFraction)
.setInitStd(initStd)
.setMaxIter(maxIter)
.setStepSize(stepSize)
.setTol(tol)
.setSolver(solver)
.setFeaturesCol(rFormula.getFeaturesCol)
.setLabelCol(rFormula.getLabelCol)
.setPredictionCol(PREDICTED_LABEL_INDEX_COL)
if (seed != null && seed.length > 0) {
fmc.setSeed(seed.toLong)
}
if (thresholds != null) {
fmc.setThresholds(thresholds)
}
val idxToStr = new IndexToString()
.setInputCol(PREDICTED_LABEL_INDEX_COL)
.setOutputCol(PREDICTED_LABEL_COL)
.setLabels(labels)
val pipeline = new Pipeline()
.setStages(Array(rFormulaModel, fmc, idxToStr))
.fit(data)
new FMClassifierWrapper(pipeline, features, labels)
}
override def read: MLReader[FMClassifierWrapper] = new FMClassifierWrapperReader
class FMClassifierWrapperWriter(instance: FMClassifierWrapper) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadata = ("class" -> instance.getClass.getName) ~
("features" -> instance.features.toSeq) ~
("labels" -> instance.labels.toSeq)
val rMetadataJson: String = compact(render(rMetadata))
sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
instance.pipeline.save(pipelinePath)
}
}
class FMClassifierWrapperReader extends MLReader[FMClassifierWrapper] {
override def load(path: String): FMClassifierWrapper = {
implicit val format = DefaultFormats
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
val rMetadata = parse(rMetadataStr)
val features = (rMetadata \ "features").extract[Array[String]]
val labels = (rMetadata \ "labels").extract[Array[String]]
val pipeline = PipelineModel.load(pipelinePath)
new FMClassifierWrapper(pipeline, features, labels)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy