org.apache.spark.ml.r.LDAWrapper.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.r
import scala.collection.mutable
import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.SparkException
import org.apache.spark.ml.{Pipeline, PipelineModel, PipelineStage}
import org.apache.spark.ml.clustering.{DistributedLDAModel, LDA, LDAModel}
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel, RegexTokenizer, StopWordsRemover}
import org.apache.spark.ml.linalg.{Vector, VectorUDT}
import org.apache.spark.ml.param.ParamPair
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.StringType
private[r] class LDAWrapper private (
val pipeline: PipelineModel,
val logLikelihood: Double,
val logPerplexity: Double,
val vocabulary: Array[String]) extends MLWritable {
import LDAWrapper._
private val lda: LDAModel = pipeline.stages.last.asInstanceOf[LDAModel]
// The following variables were called by R side code only when the LDA model is distributed
lazy private val distributedModel =
pipeline.stages.last.asInstanceOf[DistributedLDAModel]
lazy val trainingLogLikelihood: Double = distributedModel.trainingLogLikelihood
lazy val logPrior: Double = distributedModel.logPrior
private val preprocessor: PipelineModel =
new PipelineModel(s"${Identifiable.randomUID(pipeline.uid)}", pipeline.stages.dropRight(1))
def transform(data: Dataset[_]): DataFrame = {
val vec2ary = udf { vec: Vector => vec.toArray }
val outputCol = lda.getTopicDistributionCol
val tempCol = s"${Identifiable.randomUID(outputCol)}"
val preprocessed = preprocessor.transform(data)
lda.transform(preprocessed, ParamPair(lda.topicDistributionCol, tempCol))
.withColumn(outputCol, vec2ary(col(tempCol)))
.drop(TOKENIZER_COL, STOPWORDS_REMOVER_COL, COUNT_VECTOR_COL, tempCol)
}
def computeLogPerplexity(data: Dataset[_]): Double = {
lda.logPerplexity(preprocessor.transform(data))
}
def topics(maxTermsPerTopic: Int): DataFrame = {
val topicIndices: DataFrame = lda.describeTopics(maxTermsPerTopic)
if (vocabulary.isEmpty || vocabulary.length < vocabSize) {
topicIndices
} else {
val index2term = udf { indices: mutable.WrappedArray[Int] => indices.map(i => vocabulary(i)) }
topicIndices
.select(col("topic"), index2term(col("termIndices")).as("term"), col("termWeights"))
}
}
lazy val isDistributed: Boolean = lda.isDistributed
lazy val vocabSize: Int = lda.vocabSize
lazy val docConcentration: Array[Double] = lda.getEffectiveDocConcentration
lazy val topicConcentration: Double = lda.getEffectiveTopicConcentration
override def write: MLWriter = new LDAWrapper.LDAWrapperWriter(this)
}
private[r] object LDAWrapper extends MLReadable[LDAWrapper] {
val TOKENIZER_COL = s"${Identifiable.randomUID("rawTokens")}"
val STOPWORDS_REMOVER_COL = s"${Identifiable.randomUID("tokens")}"
val COUNT_VECTOR_COL = s"${Identifiable.randomUID("features")}"
private def getPreStages(
features: String,
customizedStopWords: Array[String],
maxVocabSize: Int): Array[PipelineStage] = {
val tokenizer = new RegexTokenizer()
.setInputCol(features)
.setOutputCol(TOKENIZER_COL)
val stopWordsRemover = new StopWordsRemover()
.setInputCol(TOKENIZER_COL)
.setOutputCol(STOPWORDS_REMOVER_COL)
stopWordsRemover.setStopWords(stopWordsRemover.getStopWords ++ customizedStopWords)
val countVectorizer = new CountVectorizer()
.setVocabSize(maxVocabSize)
.setInputCol(STOPWORDS_REMOVER_COL)
.setOutputCol(COUNT_VECTOR_COL)
Array(tokenizer, stopWordsRemover, countVectorizer)
}
def fit(
data: DataFrame,
features: String,
k: Int,
maxIter: Int,
optimizer: String,
subsamplingRate: Double,
topicConcentration: Double,
docConcentration: Array[Double],
customizedStopWords: Array[String],
maxVocabSize: Int): LDAWrapper = {
val lda = new LDA()
.setK(k)
.setMaxIter(maxIter)
.setSubsamplingRate(subsamplingRate)
.setOptimizer(optimizer)
val featureSchema = data.schema(features)
val stages = featureSchema.dataType match {
case d: StringType =>
getPreStages(features, customizedStopWords, maxVocabSize) ++
Array(lda.setFeaturesCol(COUNT_VECTOR_COL))
case d: VectorUDT =>
Array(lda.setFeaturesCol(features))
case _ =>
throw new SparkException(
s"Unsupported input features type of ${featureSchema.dataType.typeName}," +
s" only String type and Vector type are supported now.")
}
if (topicConcentration != -1) {
lda.setTopicConcentration(topicConcentration)
} else {
// Auto-set topicConcentration
}
if (docConcentration.length == 1) {
if (docConcentration.head != -1) {
lda.setDocConcentration(docConcentration.head)
} else {
// Auto-set docConcentration
}
} else {
lda.setDocConcentration(docConcentration)
}
val pipeline = new Pipeline().setStages(stages)
val model = pipeline.fit(data)
val vocabulary: Array[String] = featureSchema.dataType match {
case d: StringType =>
val countVectorModel = model.stages(2).asInstanceOf[CountVectorizerModel]
countVectorModel.vocabulary
case _ => Array.empty[String]
}
val ldaModel: LDAModel = model.stages.last.asInstanceOf[LDAModel]
val preprocessor: PipelineModel =
new PipelineModel(s"${Identifiable.randomUID(pipeline.uid)}", model.stages.dropRight(1))
val preprocessedData = preprocessor.transform(data)
new LDAWrapper(
model,
ldaModel.logLikelihood(preprocessedData),
ldaModel.logPerplexity(preprocessedData),
vocabulary)
}
override def read: MLReader[LDAWrapper] = new LDAWrapperReader
override def load(path: String): LDAWrapper = super.load(path)
class LDAWrapperWriter(instance: LDAWrapper) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadata = ("class" -> instance.getClass.getName) ~
("logLikelihood" -> instance.logLikelihood) ~
("logPerplexity" -> instance.logPerplexity) ~
("vocabulary" -> instance.vocabulary.toList)
val rMetadataJson: String = compact(render(rMetadata))
sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
instance.pipeline.save(pipelinePath)
}
}
class LDAWrapperReader extends MLReader[LDAWrapper] {
override def load(path: String): LDAWrapper = {
implicit val format = DefaultFormats
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
val rMetadata = parse(rMetadataStr)
val logLikelihood = (rMetadata \ "logLikelihood").extract[Double]
val logPerplexity = (rMetadata \ "logPerplexity").extract[Double]
val vocabulary = (rMetadata \ "vocabulary").extract[List[String]].toArray
val pipeline = PipelineModel.load(pipelinePath)
new LDAWrapper(pipeline, logLikelihood, logPerplexity, vocabulary)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy