org.apache.spark.ml.r.LinearRegressionWrapper.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.ml.r
import org.apache.hadoop.fs.Path
import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.r.RWrapperUtils._
import org.apache.spark.ml.regression.{LinearRegression, LinearRegressionModel}
import org.apache.spark.ml.util._
import org.apache.spark.sql.{DataFrame, Dataset}
private[r] class LinearRegressionWrapper private (
val pipeline: PipelineModel,
val features: Array[String]) extends MLWritable {
private val linearRegressionModel: LinearRegressionModel =
pipeline.stages(1).asInstanceOf[LinearRegressionModel]
lazy val rFeatures: Array[String] = if (linearRegressionModel.getFitIntercept) {
Array("(Intercept)") ++ features
} else {
features
}
lazy val rCoefficients: Array[Double] = if (linearRegressionModel.getFitIntercept) {
Array(linearRegressionModel.intercept) ++ linearRegressionModel.coefficients.toArray
} else {
linearRegressionModel.coefficients.toArray
}
lazy val numFeatures: Int = linearRegressionModel.numFeatures
def transform(dataset: Dataset[_]): DataFrame = {
pipeline.transform(dataset)
.drop(linearRegressionModel.getFeaturesCol)
}
override def write: MLWriter = new LinearRegressionWrapper.LinearRegressionWrapperWriter(this)
}
private[r] object LinearRegressionWrapper
extends MLReadable[LinearRegressionWrapper] {
def fit( // scalastyle:ignore
data: DataFrame,
formula: String,
maxIter: Int,
regParam: Double,
elasticNetParam: Double,
tol: Double,
standardization: Boolean,
solver: String,
weightCol: String,
aggregationDepth: Int,
loss: String,
epsilon: Double,
stringIndexerOrderType: String): LinearRegressionWrapper = {
val rFormula = new RFormula()
.setFormula(formula)
.setStringIndexerOrderType(stringIndexerOrderType)
checkDataColumns(rFormula, data)
val rFormulaModel = rFormula.fit(data)
val fitIntercept = rFormula.hasIntercept
// get feature names from output schema
val schema = rFormulaModel.transform(data).schema
val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol))
.attributes.get
val features = featureAttrs.map(_.name.get)
// assemble and fit the pipeline
val lm = new LinearRegression()
.setMaxIter(maxIter)
.setRegParam(regParam)
.setElasticNetParam(elasticNetParam)
.setTol(tol)
.setFitIntercept(fitIntercept)
.setStandardization(standardization)
.setSolver(solver)
.setAggregationDepth(aggregationDepth)
.setLoss(loss)
.setEpsilon(epsilon)
.setFeaturesCol(rFormula.getFeaturesCol)
if (weightCol != null) {
lm.setWeightCol(weightCol)
}
val pipeline = new Pipeline()
.setStages(Array(rFormulaModel, lm))
.fit(data)
new LinearRegressionWrapper(pipeline, features)
}
override def read: MLReader[LinearRegressionWrapper] = new LinearRegressionWrapperReader
class LinearRegressionWrapperWriter(instance: LinearRegressionWrapper) extends MLWriter {
override protected def saveImpl(path: String): Unit = {
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadata = ("class" -> instance.getClass.getName) ~
("features" -> instance.features.toSeq)
val rMetadataJson: String = compact(render(rMetadata))
sc.parallelize(Seq(rMetadataJson), 1).saveAsTextFile(rMetadataPath)
instance.pipeline.save(pipelinePath)
}
}
class LinearRegressionWrapperReader extends MLReader[LinearRegressionWrapper] {
override def load(path: String): LinearRegressionWrapper = {
implicit val format = DefaultFormats
val rMetadataPath = new Path(path, "rMetadata").toString
val pipelinePath = new Path(path, "pipeline").toString
val rMetadataStr = sc.textFile(rMetadataPath, 1).first()
val rMetadata = parse(rMetadataStr)
val features = (rMetadata \ "features").extract[Array[String]]
val pipeline = PipelineModel.load(pipelinePath)
new LinearRegressionWrapper(pipeline, features)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy