org.apache.spark.mllib.linalg.BLAS.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.linalg
import dev.ludovic.netlib.blas.{BLAS => NetlibBLAS, JavaBLAS => NetlibJavaBLAS, NativeBLAS => NetlibNativeBLAS}
import org.apache.spark.internal.Logging
/**
* BLAS routines for MLlib's vectors and matrices.
*/
private[spark] object BLAS extends Serializable with Logging {
@transient private var _javaBLAS: NetlibBLAS = _
@transient private var _nativeBLAS: NetlibBLAS = _
private val nativeL1Threshold: Int = 256
// For level-1 function dspmv, use javaBLAS for better performance.
private[spark] def javaBLAS: NetlibBLAS = {
if (_javaBLAS == null) {
_javaBLAS = NetlibJavaBLAS.getInstance
}
_javaBLAS
}
// For level-3 routines, we use the native BLAS.
private[spark] def nativeBLAS: NetlibBLAS = {
if (_nativeBLAS == null) {
_nativeBLAS =
try { NetlibNativeBLAS.getInstance } catch { case _: Throwable => javaBLAS }
}
_nativeBLAS
}
private[spark] def getBLAS(vectorSize: Int): NetlibBLAS = {
if (vectorSize < nativeL1Threshold) {
javaBLAS
} else {
nativeBLAS
}
}
/**
* y += a * x
*/
def axpy(a: Double, x: Vector, y: Vector): Unit = {
require(x.size == y.size)
y match {
case dy: DenseVector =>
x match {
case sx: SparseVector =>
axpy(a, sx, dy)
case dx: DenseVector =>
axpy(a, dx, dy)
case _ =>
throw new UnsupportedOperationException(
s"axpy doesn't support x type ${x.getClass}.")
}
case _ =>
throw new IllegalArgumentException(
s"axpy only supports adding to a dense vector but got type ${y.getClass}.")
}
}
/**
* y += a * x
*/
private def axpy(a: Double, x: DenseVector, y: DenseVector): Unit = {
val n = x.size
getBLAS(n).daxpy(n, a, x.values, 1, y.values, 1)
}
/**
* y += a * x
*/
private def axpy(a: Double, x: SparseVector, y: DenseVector): Unit = {
val xValues = x.values
val xIndices = x.indices
val yValues = y.values
val nnz = xIndices.length
if (a == 1.0) {
var k = 0
while (k < nnz) {
yValues(xIndices(k)) += xValues(k)
k += 1
}
} else {
var k = 0
while (k < nnz) {
yValues(xIndices(k)) += a * xValues(k)
k += 1
}
}
}
/** Y += a * x */
private[spark] def axpy(a: Double, X: DenseMatrix, Y: DenseMatrix): Unit = {
require(X.numRows == Y.numRows && X.numCols == Y.numCols, "Dimension mismatch: " +
s"size(X) = ${(X.numRows, X.numCols)} but size(Y) = ${(Y.numRows, Y.numCols)}.")
getBLAS(X.values.length).daxpy(X.numRows * X.numCols, a, X.values, 1, Y.values, 1)
}
/**
* dot(x, y)
*/
def dot(x: Vector, y: Vector): Double = {
require(x.size == y.size,
"BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
" x.size = " + x.size + ", y.size = " + y.size)
(x, y) match {
case (dx: DenseVector, dy: DenseVector) =>
dot(dx, dy)
case (sx: SparseVector, dy: DenseVector) =>
dot(sx, dy)
case (dx: DenseVector, sy: SparseVector) =>
dot(sy, dx)
case (sx: SparseVector, sy: SparseVector) =>
dot(sx, sy)
case _ =>
throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
}
}
/**
* dot(x, y)
*/
private def dot(x: DenseVector, y: DenseVector): Double = {
val n = x.size
getBLAS(n).ddot(n, x.values, 1, y.values, 1)
}
/**
* dot(x, y)
*/
private def dot(x: SparseVector, y: DenseVector): Double = {
val xValues = x.values
val xIndices = x.indices
val yValues = y.values
val nnz = xIndices.length
var sum = 0.0
var k = 0
while (k < nnz) {
sum += xValues(k) * yValues(xIndices(k))
k += 1
}
sum
}
/**
* dot(x, y)
*/
private def dot(x: SparseVector, y: SparseVector): Double = {
val xValues = x.values
val xIndices = x.indices
val yValues = y.values
val yIndices = y.indices
val nnzx = xIndices.length
val nnzy = yIndices.length
var kx = 0
var ky = 0
var sum = 0.0
// y catching x
while (kx < nnzx && ky < nnzy) {
val ix = xIndices(kx)
while (ky < nnzy && yIndices(ky) < ix) {
ky += 1
}
if (ky < nnzy && yIndices(ky) == ix) {
sum += xValues(kx) * yValues(ky)
ky += 1
}
kx += 1
}
sum
}
/**
* y = x
*/
def copy(x: Vector, y: Vector): Unit = {
val n = y.size
require(x.size == n)
y match {
case dy: DenseVector =>
x match {
case sx: SparseVector =>
val sxIndices = sx.indices
val sxValues = sx.values
val dyValues = dy.values
val nnz = sxIndices.length
var i = 0
var k = 0
while (k < nnz) {
val j = sxIndices(k)
while (i < j) {
dyValues(i) = 0.0
i += 1
}
dyValues(i) = sxValues(k)
i += 1
k += 1
}
while (i < n) {
dyValues(i) = 0.0
i += 1
}
case dx: DenseVector =>
Array.copy(dx.values, 0, dy.values, 0, n)
}
case _ =>
throw new IllegalArgumentException(s"y must be dense in copy but got ${y.getClass}")
}
}
/**
* x = a * x
*/
def scal(a: Double, x: Vector): Unit = {
x match {
case sx: SparseVector =>
getBLAS(sx.values.length).dscal(sx.values.length, a, sx.values, 1)
case dx: DenseVector =>
getBLAS(dx.size).dscal(dx.values.length, a, dx.values, 1)
case _ =>
throw new IllegalArgumentException(s"scal doesn't support vector type ${x.getClass}.")
}
}
/**
* Adds alpha * v * v.t to a matrix in-place. This is the same as BLAS's ?SPR.
*
* @param U the upper triangular part of the matrix in a [[DenseVector]](column major)
*/
def spr(alpha: Double, v: Vector, U: DenseVector): Unit = {
spr(alpha, v, U.values)
}
/**
* Adds alpha * v * v.t to a matrix in-place. This is the same as BLAS's ?SPR.
*
* @param U the upper triangular part of the matrix packed in an array (column major)
*/
def spr(alpha: Double, v: Vector, U: Array[Double]): Unit = {
val n = v.size
v match {
case DenseVector(values) =>
nativeBLAS.dspr("U", n, alpha, values, 1, U)
case SparseVector(size, indices, values) =>
val nnz = indices.length
var colStartIdx = 0
var prevCol = 0
var col = 0
var j = 0
var i = 0
var av = 0.0
while (j < nnz) {
col = indices(j)
// Skip empty columns.
colStartIdx += (col - prevCol) * (col + prevCol + 1) / 2
av = alpha * values(j)
i = 0
while (i <= j) {
U(colStartIdx + indices(i)) += av * values(i)
i += 1
}
j += 1
prevCol = col
}
case _ =>
throw new IllegalArgumentException(s"Unknown vector type ${v.getClass}.")
}
}
/**
* A := alpha * x * x^T^ + A
* @param alpha a real scalar that will be multiplied to x * x^T^.
* @param x the vector x that contains the n elements.
* @param A the symmetric matrix A. Size of n x n.
*/
def syr(alpha: Double, x: Vector, A: DenseMatrix): Unit = {
val mA = A.numRows
val nA = A.numCols
require(mA == nA, s"A is not a square matrix (and hence is not symmetric). A: $mA x $nA")
require(mA == x.size, s"The size of x doesn't match the rank of A. A: $mA x $nA, x: ${x.size}")
x match {
case dv: DenseVector => syr(alpha, dv, A)
case sv: SparseVector => syr(alpha, sv, A)
case _ =>
throw new IllegalArgumentException(s"syr doesn't support vector type ${x.getClass}.")
}
}
private def syr(alpha: Double, x: DenseVector, A: DenseMatrix): Unit = {
val nA = A.numRows
val mA = A.numCols
nativeBLAS.dsyr("U", x.size, alpha, x.values, 1, A.values, nA)
// Fill lower triangular part of A
var i = 0
while (i < mA) {
var j = i + 1
while (j < nA) {
A(j, i) = A(i, j)
j += 1
}
i += 1
}
}
private def syr(alpha: Double, x: SparseVector, A: DenseMatrix): Unit = {
val mA = A.numCols
val xIndices = x.indices
val xValues = x.values
val nnz = xValues.length
val Avalues = A.values
var i = 0
while (i < nnz) {
val multiplier = alpha * xValues(i)
val offset = xIndices(i) * mA
var j = 0
while (j < nnz) {
Avalues(xIndices(j) + offset) += multiplier * xValues(j)
j += 1
}
i += 1
}
}
/**
* C := alpha * A * B + beta * C
* @param alpha a scalar to scale the multiplication A * B.
* @param A the matrix A that will be left multiplied to B. Size of m x k.
* @param B the matrix B that will be left multiplied by A. Size of k x n.
* @param beta a scalar that can be used to scale matrix C.
* @param C the resulting matrix C. Size of m x n. C.isTransposed must be false.
*/
def gemm(
alpha: Double,
A: Matrix,
B: DenseMatrix,
beta: Double,
C: DenseMatrix): Unit = {
require(!C.isTransposed,
"The matrix C cannot be the product of a transpose() call. C.isTransposed must be false.")
if (alpha == 0.0 && beta == 1.0) {
logDebug("gemm: alpha is equal to 0 and beta is equal to 1. Returning C.")
} else if (alpha == 0.0) {
getBLAS(C.values.length).dscal(C.values.length, beta, C.values, 1)
} else {
A match {
case sparse: SparseMatrix => gemm(alpha, sparse, B, beta, C)
case dense: DenseMatrix => gemm(alpha, dense, B, beta, C)
case _ =>
throw new IllegalArgumentException(s"gemm doesn't support matrix type ${A.getClass}.")
}
}
}
/**
* C := alpha * A * B + beta * C
* For `DenseMatrix` A.
*/
private def gemm(
alpha: Double,
A: DenseMatrix,
B: DenseMatrix,
beta: Double,
C: DenseMatrix): Unit = {
val tAstr = if (A.isTransposed) "T" else "N"
val tBstr = if (B.isTransposed) "T" else "N"
val lda = if (!A.isTransposed) A.numRows else A.numCols
val ldb = if (!B.isTransposed) B.numRows else B.numCols
require(A.numCols == B.numRows,
s"The columns of A don't match the rows of B. A: ${A.numCols}, B: ${B.numRows}")
require(A.numRows == C.numRows,
s"The rows of C don't match the rows of A. C: ${C.numRows}, A: ${A.numRows}")
require(B.numCols == C.numCols,
s"The columns of C don't match the columns of B. C: ${C.numCols}, A: ${B.numCols}")
nativeBLAS.dgemm(tAstr, tBstr, A.numRows, B.numCols, A.numCols, alpha, A.values, lda,
B.values, ldb, beta, C.values, C.numRows)
}
/**
* C := alpha * A * B + beta * C
* For `SparseMatrix` A.
*/
private def gemm(
alpha: Double,
A: SparseMatrix,
B: DenseMatrix,
beta: Double,
C: DenseMatrix): Unit = {
val mA: Int = A.numRows
val nB: Int = B.numCols
val kA: Int = A.numCols
val kB: Int = B.numRows
require(kA == kB, s"The columns of A don't match the rows of B. A: $kA, B: $kB")
require(mA == C.numRows, s"The rows of C don't match the rows of A. C: ${C.numRows}, A: $mA")
require(nB == C.numCols,
s"The columns of C don't match the columns of B. C: ${C.numCols}, A: $nB")
val Avals = A.values
val Bvals = B.values
val Cvals = C.values
val ArowIndices = A.rowIndices
val AcolPtrs = A.colPtrs
// Slicing is easy in this case. This is the optimal multiplication setting for sparse matrices
if (A.isTransposed) {
var colCounterForB = 0
if (!B.isTransposed) { // Expensive to put the check inside the loop
while (colCounterForB < nB) {
var rowCounterForA = 0
val Cstart = colCounterForB * mA
val Bstart = colCounterForB * kA
while (rowCounterForA < mA) {
var i = AcolPtrs(rowCounterForA)
val indEnd = AcolPtrs(rowCounterForA + 1)
var sum = 0.0
while (i < indEnd) {
sum += Avals(i) * Bvals(Bstart + ArowIndices(i))
i += 1
}
val Cindex = Cstart + rowCounterForA
Cvals(Cindex) = beta * Cvals(Cindex) + sum * alpha
rowCounterForA += 1
}
colCounterForB += 1
}
} else {
while (colCounterForB < nB) {
var rowCounterForA = 0
val Cstart = colCounterForB * mA
while (rowCounterForA < mA) {
var i = AcolPtrs(rowCounterForA)
val indEnd = AcolPtrs(rowCounterForA + 1)
var sum = 0.0
while (i < indEnd) {
sum += Avals(i) * Bvals(colCounterForB + nB * ArowIndices(i))
i += 1
}
val Cindex = Cstart + rowCounterForA
Cvals(Cindex) = beta * Cvals(Cindex) + sum * alpha
rowCounterForA += 1
}
colCounterForB += 1
}
}
} else {
// Scale matrix first if `beta` is not equal to 1.0
if (beta != 1.0) {
getBLAS(C.values.length).dscal(C.values.length, beta, C.values, 1)
}
// Perform matrix multiplication and add to C. The rows of A are multiplied by the columns of
// B, and added to C.
var colCounterForB = 0 // the column to be updated in C
if (!B.isTransposed) { // Expensive to put the check inside the loop
while (colCounterForB < nB) {
var colCounterForA = 0 // The column of A to multiply with the row of B
val Bstart = colCounterForB * kB
val Cstart = colCounterForB * mA
while (colCounterForA < kA) {
var i = AcolPtrs(colCounterForA)
val indEnd = AcolPtrs(colCounterForA + 1)
val Bval = Bvals(Bstart + colCounterForA) * alpha
while (i < indEnd) {
Cvals(Cstart + ArowIndices(i)) += Avals(i) * Bval
i += 1
}
colCounterForA += 1
}
colCounterForB += 1
}
} else {
while (colCounterForB < nB) {
var colCounterForA = 0 // The column of A to multiply with the row of B
val Cstart = colCounterForB * mA
while (colCounterForA < kA) {
var i = AcolPtrs(colCounterForA)
val indEnd = AcolPtrs(colCounterForA + 1)
val Bval = Bvals(colCounterForB + nB * colCounterForA) * alpha
while (i < indEnd) {
Cvals(Cstart + ArowIndices(i)) += Avals(i) * Bval
i += 1
}
colCounterForA += 1
}
colCounterForB += 1
}
}
}
}
/**
* y := alpha * A * x + beta * y
* @param alpha a scalar to scale the multiplication A * x.
* @param A the matrix A that will be left multiplied to x. Size of m x n.
* @param x the vector x that will be left multiplied by A. Size of n x 1.
* @param beta a scalar that can be used to scale vector y.
* @param y the resulting vector y. Size of m x 1.
*/
def gemv(
alpha: Double,
A: Matrix,
x: Vector,
beta: Double,
y: DenseVector): Unit = {
require(A.numCols == x.size,
s"The columns of A don't match the number of elements of x. A: ${A.numCols}, x: ${x.size}")
require(A.numRows == y.size,
s"The rows of A don't match the number of elements of y. A: ${A.numRows}, y:${y.size}")
if (alpha == 0.0 && beta == 1.0) {
logDebug("gemv: alpha is equal to 0 and beta is equal to 1. Returning y.")
} else if (alpha == 0.0) {
scal(beta, y)
} else {
(A, x) match {
case (smA: SparseMatrix, dvx: DenseVector) =>
gemv(alpha, smA, dvx, beta, y)
case (smA: SparseMatrix, svx: SparseVector) =>
gemv(alpha, smA, svx, beta, y)
case (dmA: DenseMatrix, dvx: DenseVector) =>
gemv(alpha, dmA, dvx, beta, y)
case (dmA: DenseMatrix, svx: SparseVector) =>
gemv(alpha, dmA, svx, beta, y)
case _ =>
throw new IllegalArgumentException(s"gemv doesn't support running on matrix type " +
s"${A.getClass} and vector type ${x.getClass}.")
}
}
}
/**
* y := alpha * A * x + beta * y
* For `DenseMatrix` A and `DenseVector` x.
*/
private def gemv(
alpha: Double,
A: DenseMatrix,
x: DenseVector,
beta: Double,
y: DenseVector): Unit = {
val tStrA = if (A.isTransposed) "T" else "N"
val mA = if (!A.isTransposed) A.numRows else A.numCols
val nA = if (!A.isTransposed) A.numCols else A.numRows
nativeBLAS.dgemv(tStrA, mA, nA, alpha, A.values, mA, x.values, 1, beta,
y.values, 1)
}
/**
* y := alpha * A * x + beta * y
* For `DenseMatrix` A and `SparseVector` x.
*/
private def gemv(
alpha: Double,
A: DenseMatrix,
x: SparseVector,
beta: Double,
y: DenseVector): Unit = {
val mA: Int = A.numRows
val nA: Int = A.numCols
val Avals = A.values
val xIndices = x.indices
val xNnz = xIndices.length
val xValues = x.values
val yValues = y.values
if (A.isTransposed) {
var rowCounterForA = 0
while (rowCounterForA < mA) {
var sum = 0.0
var k = 0
while (k < xNnz) {
sum += xValues(k) * Avals(xIndices(k) + rowCounterForA * nA)
k += 1
}
yValues(rowCounterForA) = sum * alpha + beta * yValues(rowCounterForA)
rowCounterForA += 1
}
} else {
var rowCounterForA = 0
while (rowCounterForA < mA) {
var sum = 0.0
var k = 0
while (k < xNnz) {
sum += xValues(k) * Avals(xIndices(k) * mA + rowCounterForA)
k += 1
}
yValues(rowCounterForA) = sum * alpha + beta * yValues(rowCounterForA)
rowCounterForA += 1
}
}
}
/**
* y := alpha * A * x + beta * y
* For `SparseMatrix` A and `SparseVector` x.
*/
private def gemv(
alpha: Double,
A: SparseMatrix,
x: SparseVector,
beta: Double,
y: DenseVector): Unit = {
val xValues = x.values
val xIndices = x.indices
val xNnz = xIndices.length
val yValues = y.values
val mA: Int = A.numRows
val nA: Int = A.numCols
val Avals = A.values
val Arows = if (!A.isTransposed) A.rowIndices else A.colPtrs
val Acols = if (!A.isTransposed) A.colPtrs else A.rowIndices
if (A.isTransposed) {
var rowCounter = 0
while (rowCounter < mA) {
var i = Arows(rowCounter)
val indEnd = Arows(rowCounter + 1)
var sum = 0.0
var k = 0
while (i < indEnd && k < xNnz) {
if (xIndices(k) == Acols(i)) {
sum += Avals(i) * xValues(k)
k += 1
i += 1
} else if (xIndices(k) < Acols(i)) {
k += 1
} else {
i += 1
}
}
yValues(rowCounter) = sum * alpha + beta * yValues(rowCounter)
rowCounter += 1
}
} else {
if (beta != 1.0) scal(beta, y)
var colCounterForA = 0
var k = 0
while (colCounterForA < nA && k < xNnz) {
if (xIndices(k) == colCounterForA) {
var i = Acols(colCounterForA)
val indEnd = Acols(colCounterForA + 1)
val xTemp = xValues(k) * alpha
while (i < indEnd) {
yValues(Arows(i)) += Avals(i) * xTemp
i += 1
}
k += 1
}
colCounterForA += 1
}
}
}
/**
* y := alpha * A * x + beta * y
* For `SparseMatrix` A and `DenseVector` x.
*/
private def gemv(
alpha: Double,
A: SparseMatrix,
x: DenseVector,
beta: Double,
y: DenseVector): Unit = {
val xValues = x.values
val yValues = y.values
val mA: Int = A.numRows
val nA: Int = A.numCols
val Avals = A.values
val Arows = if (!A.isTransposed) A.rowIndices else A.colPtrs
val Acols = if (!A.isTransposed) A.colPtrs else A.rowIndices
// Slicing is easy in this case. This is the optimal multiplication setting for sparse matrices
if (A.isTransposed) {
var rowCounter = 0
while (rowCounter < mA) {
var i = Arows(rowCounter)
val indEnd = Arows(rowCounter + 1)
var sum = 0.0
while (i < indEnd) {
sum += Avals(i) * xValues(Acols(i))
i += 1
}
yValues(rowCounter) = beta * yValues(rowCounter) + sum * alpha
rowCounter += 1
}
} else {
if (beta != 1.0) scal(beta, y)
// Perform matrix-vector multiplication and add to y
var colCounterForA = 0
while (colCounterForA < nA) {
var i = Acols(colCounterForA)
val indEnd = Acols(colCounterForA + 1)
val xVal = xValues(colCounterForA) * alpha
while (i < indEnd) {
yValues(Arows(i)) += Avals(i) * xVal
i += 1
}
colCounterForA += 1
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy