All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.mllib.optimization.NNLS.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.mllib.optimization

import java.{util => ju}

import org.apache.spark.ml.linalg.BLAS

/**
 * Object used to solve nonnegative least squares problems using a modified
 * projected gradient method.
 */
private[spark] object NNLS {
  class Workspace(val n: Int) {
    val scratch = new Array[Double](n)
    val grad = new Array[Double](n)
    val x = new Array[Double](n)
    val dir = new Array[Double](n)
    val lastDir = new Array[Double](n)
    val res = new Array[Double](n)

    def wipe(): Unit = {
      ju.Arrays.fill(scratch, 0.0)
      ju.Arrays.fill(grad, 0.0)
      ju.Arrays.fill(x, 0.0)
      ju.Arrays.fill(dir, 0.0)
      ju.Arrays.fill(lastDir, 0.0)
      ju.Arrays.fill(res, 0.0)
    }
  }

  def createWorkspace(n: Int): Workspace = {
    new Workspace(n)
  }

  /**
   * Solve a least squares problem, possibly with nonnegativity constraints, by a modified
   * projected gradient method.  That is, find x minimising ||Ax - b||_2 given A^T A and A^T b.
   *
   * We solve the problem
   *
   * 
* $$ * min_x 1/2 x^T ata x^T - x^T atb * $$ *
* where x is nonnegative. * * The method used is similar to one described by Polyak (B. T. Polyak, The conjugate gradient * method in extremal problems, Zh. Vychisl. Mat. Mat. Fiz. 9(4)(1969), pp. 94-112) for bound- * constrained nonlinear programming. Polyak unconditionally uses a conjugate gradient * direction, however, while this method only uses a conjugate gradient direction if the last * iteration did not cause a previously-inactive constraint to become active. */ def solve(ata: Array[Double], atb: Array[Double], ws: Workspace): Array[Double] = { ws.wipe() val n = atb.length val scratch = ws.scratch // find the optimal unconstrained step def steplen(dir: Array[Double], res: Array[Double]): Double = { val top = BLAS.nativeBLAS.ddot(n, dir, 1, res, 1) BLAS.nativeBLAS.dgemv("N", n, n, 1.0, ata, n, dir, 1, 0.0, scratch, 1) // Push the denominator upward very slightly to avoid infinities and silliness top / (BLAS.nativeBLAS.ddot(n, scratch, 1, dir, 1) + 1e-20) } // stopping condition def stop(step: Double, ndir: Double, nx: Double): Boolean = { ((step.isNaN) // NaN || (step < 1e-7) // too small or negative || (step > 1e40) // too small; almost certainly numerical problems || (ndir < 1e-12 * nx) // gradient relatively too small || (ndir < 1e-32) // gradient absolutely too small; numerical issues may lurk ) } val grad = ws.grad val x = ws.x val dir = ws.dir val lastDir = ws.lastDir val res = ws.res val iterMax = math.max(400, 20 * n) var lastNorm = 0.0 var iterno = 0 var lastWall = 0 // Last iteration when we hit a bound constraint. var i = 0 while (iterno < iterMax) { // find the residual BLAS.nativeBLAS.dgemv("N", n, n, 1.0, ata, n, x, 1, 0.0, res, 1) BLAS.nativeBLAS.daxpy(n, -1.0, atb, 1, res, 1) BLAS.nativeBLAS.dcopy(n, res, 1, grad, 1) // project the gradient i = 0 while (i < n) { if (grad(i) > 0.0 && x(i) == 0.0) { grad(i) = 0.0 } i = i + 1 } val ngrad = BLAS.nativeBLAS.ddot(n, grad, 1, grad, 1) BLAS.nativeBLAS.dcopy(n, grad, 1, dir, 1) // use a CG direction under certain conditions var step = steplen(grad, res) var ndir = 0.0 val nx = BLAS.nativeBLAS.ddot(n, x, 1, x, 1) if (iterno > lastWall + 1) { val alpha = ngrad / lastNorm BLAS.nativeBLAS.daxpy(n, alpha, lastDir, 1, dir, 1) val dstep = steplen(dir, res) ndir = BLAS.nativeBLAS.ddot(n, dir, 1, dir, 1) if (stop(dstep, ndir, nx)) { // reject the CG step if it could lead to premature termination BLAS.nativeBLAS.dcopy(n, grad, 1, dir, 1) ndir = BLAS.nativeBLAS.ddot(n, dir, 1, dir, 1) } else { step = dstep } } else { ndir = BLAS.nativeBLAS.ddot(n, dir, 1, dir, 1) } // terminate? if (stop(step, ndir, nx)) { return x.clone } // don't run through the walls i = 0 while (i < n) { if (step * dir(i) > x(i)) { step = x(i) / dir(i) } i = i + 1 } // take the step i = 0 while (i < n) { if (step * dir(i) > x(i) * (1 - 1e-14)) { x(i) = 0 lastWall = iterno } else { x(i) -= step * dir(i) } i = i + 1 } iterno = iterno + 1 BLAS.nativeBLAS.dcopy(n, dir, 1, lastDir, 1) lastNorm = ngrad } x.clone } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy