org.apache.spark.mllib.rdd.MLPairRDDFunctions.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.rdd
import scala.language.implicitConversions
import scala.reflect.ClassTag
import org.apache.spark.{Aggregator, InterruptibleIterator, TaskContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.util.BoundedPriorityQueue
import org.apache.spark.util.collection.Utils
/**
* Machine learning specific Pair RDD functions.
*/
class MLPairRDDFunctions[K: ClassTag, V: ClassTag](self: RDD[(K, V)]) extends Serializable {
/**
* Returns the top k (largest) elements for each key from this RDD as defined by the specified
* implicit Ordering[T].
* If the number of elements for a certain key is less than k, all of them will be returned.
*
* @param num k, the number of top elements to return
* @param ord the implicit ordering for T
* @return an RDD that contains the top k values for each key
*/
def topByKey(num: Int)(implicit ord: Ordering[V]): RDD[(K, Array[V])] = {
val createCombiner = (v: V) => new BoundedPriorityQueue[V](num)(ord) += v
val mergeValue = (c: BoundedPriorityQueue[V], v: V) => c += v
val mergeCombiners = (c1: BoundedPriorityQueue[V], c2: BoundedPriorityQueue[V]) => c1 ++= c2
val aggregator = new Aggregator[K, V, BoundedPriorityQueue[V]](
self.context.clean(createCombiner),
self.context.clean(mergeValue),
self.context.clean(mergeCombiners))
self.mapPartitions(iter => {
val context = TaskContext.get()
new InterruptibleIterator(
context,
aggregator
.combineValuesByKey(iter, context)
.map { case (k, v) => (k, v.toArray.sorted(ord.reverse)) }
)
}, preservesPartitioning = true
).reduceByKey { (array1, array2) =>
val size = math.min(num, array1.length + array2.length)
val array = Array.ofDim[V](size)
Utils.mergeOrdered[V](Seq(array1, array2))(ord.reverse).copyToArray(array, 0, size)
array
}
}
}
object MLPairRDDFunctions {
/** Implicit conversion from a pair RDD to MLPairRDDFunctions. */
implicit def fromPairRDD[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]): MLPairRDDFunctions[K, V] =
new MLPairRDDFunctions[K, V](rdd)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy