org.apache.spark.mllib.stat.Statistics.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.stat
import scala.annotation.varargs
import org.apache.spark.annotation.Since
import org.apache.spark.api.java.{JavaDoubleRDD, JavaRDD}
import org.apache.spark.ml.stat._
import org.apache.spark.mllib.linalg.{Matrix, Vector}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.stat.correlation.Correlations
import org.apache.spark.mllib.stat.test.{ChiSqTest, ChiSqTestResult, KolmogorovSmirnovTest,
KolmogorovSmirnovTestResult}
import org.apache.spark.rdd.RDD
/**
* API for statistical functions in MLlib.
*/
@Since("1.1.0")
object Statistics {
/**
* Computes column-wise summary statistics for the input RDD[Vector].
*
* @param X an RDD[Vector] for which column-wise summary statistics are to be computed.
* @return [[MultivariateStatisticalSummary]] object containing column-wise summary statistics.
*/
@Since("1.1.0")
def colStats(X: RDD[Vector]): MultivariateStatisticalSummary = {
new RowMatrix(X).computeColumnSummaryStatistics()
}
/**
* Computes required column-wise summary statistics for the input RDD[(Vector, Double)].
*
* @param X an RDD containing vectors and weights for which column-wise summary statistics
* are to be computed.
* @return [[SummarizerBuffer]] object containing column-wise summary statistics.
*/
private[mllib] def colStats(X: RDD[(Vector, Double)], requested: Seq[String]) = {
X.treeAggregate(Summarizer.createSummarizerBuffer(requested: _*))(
seqOp = { case (c, (v, w)) => c.add(v.nonZeroIterator, v.size, w) },
combOp = { case (c1, c2) => c1.merge(c2) },
depth = 2
)
}
/**
* Compute the Pearson correlation matrix for the input RDD of Vectors.
* Columns with 0 covariance produce NaN entries in the correlation matrix.
*
* @param X an RDD[Vector] for which the correlation matrix is to be computed.
* @return Pearson correlation matrix comparing columns in X.
*/
@Since("1.1.0")
def corr(X: RDD[Vector]): Matrix = Correlations.corrMatrix(X)
/**
* Compute the correlation matrix for the input RDD of Vectors using the specified method.
* Methods currently supported: `pearson` (default), `spearman`.
*
* @param X an RDD[Vector] for which the correlation matrix is to be computed.
* @param method String specifying the method to use for computing correlation.
* Supported: `pearson` (default), `spearman`
* @return Correlation matrix comparing columns in X.
*
* @note For Spearman, a rank correlation, we need to create an RDD[Double] for each column
* and sort it in order to retrieve the ranks and then join the columns back into an RDD[Vector],
* which is fairly costly. Cache the input RDD before calling corr with `method = "spearman"` to
* avoid recomputing the common lineage.
*/
@Since("1.1.0")
def corr(X: RDD[Vector], method: String): Matrix = Correlations.corrMatrix(X, method)
/**
* Compute the Pearson correlation for the input RDDs.
* Returns NaN if either vector has 0 variance.
*
* @param x RDD[Double] of the same cardinality as y.
* @param y RDD[Double] of the same cardinality as x.
* @return A Double containing the Pearson correlation between the two input RDD[Double]s
*
* @note The two input RDDs need to have the same number of partitions and the same number of
* elements in each partition.
*/
@Since("1.1.0")
def corr(x: RDD[Double], y: RDD[Double]): Double = Correlations.corr(x, y)
/**
* Java-friendly version of `corr()`
*/
@Since("1.4.1")
def corr(x: JavaRDD[java.lang.Double], y: JavaRDD[java.lang.Double]): Double =
corr(x.rdd.asInstanceOf[RDD[Double]], y.rdd.asInstanceOf[RDD[Double]])
/**
* Compute the correlation for the input RDDs using the specified method.
* Methods currently supported: `pearson` (default), `spearman`.
*
* @param x RDD[Double] of the same cardinality as y.
* @param y RDD[Double] of the same cardinality as x.
* @param method String specifying the method to use for computing correlation.
* Supported: `pearson` (default), `spearman`
* @return A Double containing the correlation between the two input RDD[Double]s using the
* specified method.
*
* @note The two input RDDs need to have the same number of partitions and the same number of
* elements in each partition.
*/
@Since("1.1.0")
def corr(x: RDD[Double], y: RDD[Double], method: String): Double = Correlations.corr(x, y, method)
/**
* Java-friendly version of `corr()`
*/
@Since("1.4.1")
def corr(x: JavaRDD[java.lang.Double], y: JavaRDD[java.lang.Double], method: String): Double =
corr(x.rdd.asInstanceOf[RDD[Double]], y.rdd.asInstanceOf[RDD[Double]], method)
/**
* Conduct Pearson's chi-squared goodness of fit test of the observed data against the
* expected distribution.
*
* @param observed Vector containing the observed categorical counts/relative frequencies.
* @param expected Vector containing the expected categorical counts/relative frequencies.
* `expected` is rescaled if the `expected` sum differs from the `observed` sum.
* @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
* the method used, and the null hypothesis.
*
* @note The two input Vectors need to have the same size.
* `observed` cannot contain negative values.
* `expected` cannot contain nonpositive values.
*/
@Since("1.1.0")
def chiSqTest(observed: Vector, expected: Vector): ChiSqTestResult = {
ChiSqTest.chiSquared(observed, expected)
}
/**
* Conduct Pearson's chi-squared goodness of fit test of the observed data against the uniform
* distribution, with each category having an expected frequency of `1 / observed.size`.
*
* @param observed Vector containing the observed categorical counts/relative frequencies.
* @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
* the method used, and the null hypothesis.
*
* @note `observed` cannot contain negative values.
*/
@Since("1.1.0")
def chiSqTest(observed: Vector): ChiSqTestResult = ChiSqTest.chiSquared(observed)
/**
* Conduct Pearson's independence test on the input contingency matrix, which cannot contain
* negative entries or columns or rows that sum up to 0.
*
* @param observed The contingency matrix (containing either counts or relative frequencies).
* @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
* the method used, and the null hypothesis.
*/
@Since("1.1.0")
def chiSqTest(observed: Matrix): ChiSqTestResult = ChiSqTest.chiSquaredMatrix(observed)
/**
* Conduct Pearson's independence test for every feature against the label across the input RDD.
* For each feature, the (feature, label) pairs are converted into a contingency matrix for which
* the chi-squared statistic is computed. All label and feature values must be categorical.
*
* @param data an `RDD[LabeledPoint]` containing the labeled dataset with categorical features.
* Real-valued features will be treated as categorical for each distinct value.
* @return an array containing the ChiSquaredTestResult for every feature against the label.
* The order of the elements in the returned array reflects the order of input features.
*/
@Since("1.1.0")
def chiSqTest(data: RDD[LabeledPoint]): Array[ChiSqTestResult] = {
ChiSqTest.chiSquaredFeatures(data)
}
/**
* Java-friendly version of `chiSqTest()`
*/
@Since("1.5.0")
def chiSqTest(data: JavaRDD[LabeledPoint]): Array[ChiSqTestResult] = chiSqTest(data.rdd)
/**
* Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a
* continuous distribution. By comparing the largest difference between the empirical cumulative
* distribution of the sample data and the theoretical distribution we can provide a test for the
* the null hypothesis that the sample data comes from that theoretical distribution.
* For more information on KS Test:
* @see
* Kolmogorov-Smirnov test (Wikipedia)
*
* @param data an `RDD[Double]` containing the sample of data to test
* @param cdf a `Double => Double` function to calculate the theoretical CDF at a given value
* @return [[org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult]] object containing test
* statistic, p-value, and null hypothesis.
*/
@Since("1.5.0")
def kolmogorovSmirnovTest(data: RDD[Double], cdf: Double => Double)
: KolmogorovSmirnovTestResult = {
KolmogorovSmirnovTest.testOneSample(data, cdf)
}
/**
* Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability
* distribution equality. Currently supports the normal distribution, taking as parameters
* the mean and standard deviation.
* (distName = "norm")
* @param data an `RDD[Double]` containing the sample of data to test
* @param distName a `String` name for a theoretical distribution
* @param params `Double*` specifying the parameters to be used for the theoretical distribution
* @return [[org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult]] object containing test
* statistic, p-value, and null hypothesis.
*/
@Since("1.5.0")
@varargs
def kolmogorovSmirnovTest(data: RDD[Double], distName: String, params: Double*)
: KolmogorovSmirnovTestResult = {
KolmogorovSmirnovTest.testOneSample(data, distName, params: _*)
}
/**
* Java-friendly version of `kolmogorovSmirnovTest()`
*/
@Since("1.5.0")
@varargs
def kolmogorovSmirnovTest(
data: JavaDoubleRDD,
distName: String,
params: Double*): KolmogorovSmirnovTestResult = {
kolmogorovSmirnovTest(data.rdd.asInstanceOf[RDD[Double]], distName, params: _*)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy