
org.apache.spark.mllib.clustering.LDAOptimizer.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.clustering
import java.util.Random
import breeze.linalg.{all, normalize, sum, DenseMatrix => BDM, DenseVector => BDV}
import breeze.numerics.{abs, exp, trigamma}
import breeze.stats.distributions.{Gamma, RandBasis}
import org.apache.spark.annotation.Since
import org.apache.spark.graphx._
import org.apache.spark.graphx.util.PeriodicGraphCheckpointer
import org.apache.spark.internal.Logging
import org.apache.spark.mllib.linalg.{DenseVector, Matrices, SparseVector, Vector, Vectors}
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
/**
* An LDAOptimizer specifies which optimization/learning/inference algorithm to use, and it can
* hold optimizer-specific parameters for users to set.
*/
@Since("1.4.0")
trait LDAOptimizer {
/*
DEVELOPERS NOTE:
An LDAOptimizer contains an algorithm for LDA and performs the actual computation, which
stores internal data structure (Graph or Matrix) and other parameters for the algorithm.
The interface is isolated to improve the extensibility of LDA.
*/
/**
* Initializer for the optimizer. LDA passes the common parameters to the optimizer and
* the internal structure can be initialized properly.
*/
private[clustering] def initialize(docs: RDD[(Long, Vector)], lda: LDA): LDAOptimizer
private[clustering] def next(): LDAOptimizer
private[clustering] def getLDAModel(iterationTimes: Array[Double]): LDAModel
}
/**
* Optimizer for EM algorithm which stores data + parameter graph, plus algorithm parameters.
*
* Currently, the underlying implementation uses Expectation-Maximization (EM), implemented
* according to the Asuncion et al. (2009) paper referenced below.
*
* References:
* - Original LDA paper (journal version):
* Blei, Ng, and Jordan. "Latent Dirichlet Allocation." JMLR, 2003.
* - This class implements their "smoothed" LDA model.
* - Paper which clearly explains several algorithms, including EM:
* Asuncion, Welling, Smyth, and Teh.
* "On Smoothing and Inference for Topic Models." UAI, 2009.
*/
@Since("1.4.0")
final class EMLDAOptimizer extends LDAOptimizer {
import LDA._
// Adjustable parameters
private var keepLastCheckpoint: Boolean = true
/**
* If using checkpointing, this indicates whether to keep the last checkpoint (vs clean up).
*/
@Since("2.0.0")
def getKeepLastCheckpoint: Boolean = this.keepLastCheckpoint
/**
* If using checkpointing, this indicates whether to keep the last checkpoint (vs clean up).
* Deleting the checkpoint can cause failures if a data partition is lost, so set this bit with
* care.
*
* Default: true
*
* @note Checkpoints will be cleaned up via reference counting, regardless.
*/
@Since("2.0.0")
def setKeepLastCheckpoint(keepLastCheckpoint: Boolean): this.type = {
this.keepLastCheckpoint = keepLastCheckpoint
this
}
// The following fields will only be initialized through the initialize() method
private[clustering] var graph: Graph[TopicCounts, TokenCount] = null
private[clustering] var k: Int = 0
private[clustering] var vocabSize: Int = 0
private[clustering] var docConcentration: Double = 0
private[clustering] var topicConcentration: Double = 0
private[clustering] var checkpointInterval: Int = 10
private var graphCheckpointer: PeriodicGraphCheckpointer[TopicCounts, TokenCount] = null
/**
* Compute bipartite term/doc graph.
*/
override private[clustering] def initialize(
docs: RDD[(Long, Vector)],
lda: LDA): EMLDAOptimizer = {
// EMLDAOptimizer currently only supports symmetric document-topic priors
val docConcentration = lda.getDocConcentration
val topicConcentration = lda.getTopicConcentration
val k = lda.getK
// Note: The restriction > 1.0 may be relaxed in the future (allowing sparse solutions),
// but values in (0,1) are not yet supported.
require(docConcentration > 1.0 || docConcentration == -1.0, s"LDA docConcentration must be" +
s" > 1.0 (or -1 for auto) for EM Optimizer, but was set to $docConcentration")
require(topicConcentration > 1.0 || topicConcentration == -1.0, s"LDA topicConcentration " +
s"must be > 1.0 (or -1 for auto) for EM Optimizer, but was set to $topicConcentration")
this.docConcentration = if (docConcentration == -1) (50.0 / k) + 1.0 else docConcentration
this.topicConcentration = if (topicConcentration == -1) 1.1 else topicConcentration
val randomSeed = lda.getSeed
// For each document, create an edge (Document -> Term) for each unique term in the document.
val edges: RDD[Edge[TokenCount]] = docs.flatMap { case (docID: Long, termCounts: Vector) =>
// Add edges for terms with non-zero counts.
termCounts.nonZeroIterator.map { case (term, cnt) =>
Edge(docID, term2index(term), cnt)
}
}
// Create vertices.
// Initially, we use random soft assignments of tokens to topics (random gamma).
val docTermVertices: RDD[(VertexId, TopicCounts)] = {
val verticesTMP: RDD[(VertexId, TopicCounts)] =
edges.mapPartitionsWithIndex { case (partIndex, partEdges) =>
val random = new Random(partIndex + randomSeed)
partEdges.flatMap { edge =>
val gamma = normalize(BDV.fill[Double](k)(random.nextDouble()), 1.0)
val sum = gamma * edge.attr
Seq((edge.srcId, sum), (edge.dstId, sum))
}
}
verticesTMP.reduceByKey(_ + _)
}
// Partition such that edges are grouped by document
this.graph = Graph(docTermVertices, edges).partitionBy(PartitionStrategy.EdgePartition1D)
this.k = k
this.vocabSize = docs.take(1).head._2.size
this.checkpointInterval = lda.getCheckpointInterval
this.graphCheckpointer = new PeriodicGraphCheckpointer[TopicCounts, TokenCount](
checkpointInterval, graph.vertices.sparkContext)
this.graphCheckpointer.update(this.graph)
this.globalTopicTotals = computeGlobalTopicTotals()
this
}
override private[clustering] def next(): EMLDAOptimizer = {
require(graph != null, "graph is null, EMLDAOptimizer not initialized.")
val eta = topicConcentration
val W = vocabSize
val alpha = docConcentration
val N_k = globalTopicTotals
val sendMsg: EdgeContext[TopicCounts, TokenCount, (Boolean, TopicCounts)] => Unit =
(edgeContext) => {
// Compute N_{wj} gamma_{wjk}
val N_wj = edgeContext.attr
// E-STEP: Compute gamma_{wjk} (smoothed topic distributions), scaled by token count
// N_{wj}.
val scaledTopicDistribution: TopicCounts =
computePTopic(edgeContext.srcAttr, edgeContext.dstAttr, N_k, W, eta, alpha) *= N_wj
edgeContext.sendToDst((false, scaledTopicDistribution))
edgeContext.sendToSrc((false, scaledTopicDistribution))
}
// The Boolean is a hack to detect whether we could modify the values in-place.
// TODO: Add zero/seqOp/combOp option to aggregateMessages. (SPARK-5438)
val mergeMsg: ((Boolean, TopicCounts), (Boolean, TopicCounts)) => (Boolean, TopicCounts) =
(m0, m1) => {
val sum =
if (m0._1) {
m0._2 += m1._2
} else if (m1._1) {
m1._2 += m0._2
} else {
m0._2 + m1._2
}
(true, sum)
}
// M-STEP: Aggregation computes new N_{kj}, N_{wk} counts.
val docTopicDistributions: VertexRDD[TopicCounts] =
graph.aggregateMessages[(Boolean, TopicCounts)](sendMsg, mergeMsg)
.mapValues(_._2)
val prevGraph = graph
// Update the vertex descriptors with the new counts.
val newGraph = Graph(docTopicDistributions, graph.edges)
graph = newGraph
graphCheckpointer.update(newGraph)
globalTopicTotals = computeGlobalTopicTotals()
prevGraph.unpersistVertices()
prevGraph.edges.unpersist()
this
}
/**
* Aggregate distributions over topics from all term vertices.
*
* Note: This executes an action on the graph RDDs.
*/
private[clustering] var globalTopicTotals: TopicCounts = null
private def computeGlobalTopicTotals(): TopicCounts = {
val numTopics = k
graph.vertices.filter(isTermVertex).values.fold(BDV.zeros[Double](numTopics))(_ += _)
}
override private[clustering] def getLDAModel(iterationTimes: Array[Double]): LDAModel = {
require(graph != null, "graph is null, EMLDAOptimizer not initialized.")
val checkpointFiles: Array[String] = if (keepLastCheckpoint) {
this.graphCheckpointer.deleteAllCheckpointsButLast()
this.graphCheckpointer.getAllCheckpointFiles
} else {
this.graphCheckpointer.deleteAllCheckpoints()
Array.empty[String]
}
// The constructor's default arguments assume gammaShape = 100 to ensure equivalence in
// LDAModel.toLocal conversion.
new DistributedLDAModel(this.graph, this.globalTopicTotals, this.k, this.vocabSize,
Vectors.dense(Array.fill(this.k)(this.docConcentration)), this.topicConcentration,
iterationTimes, DistributedLDAModel.defaultGammaShape, checkpointFiles)
}
}
/**
* An online optimizer for LDA. The Optimizer implements the Online variational Bayes LDA
* algorithm, which processes a subset of the corpus on each iteration, and updates the term-topic
* distribution adaptively.
*
* Original Online LDA paper:
* Hoffman, Blei and Bach, "Online Learning for Latent Dirichlet Allocation." NIPS, 2010.
*/
@Since("1.4.0")
final class OnlineLDAOptimizer extends LDAOptimizer with Logging {
// LDA common parameters
private var k: Int = 0
private var corpusSize: Long = 0
private var vocabSize: Int = 0
/** alias for docConcentration */
private var alpha: Vector = Vectors.dense(0)
/** (for debugging) Get docConcentration */
private[clustering] def getAlpha: Vector = alpha
/** alias for topicConcentration */
private var eta: Double = 0
/** (for debugging) Get topicConcentration */
private[clustering] def getEta: Double = eta
private var randomGenerator: java.util.Random = null
/** (for debugging) Whether to sample mini-batches with replacement. (default = true) */
private var sampleWithReplacement: Boolean = true
// Online LDA specific parameters
// Learning rate is: (tau0 + t)^{-kappa}
private var tau0: Double = 1024
private var kappa: Double = 0.51
private var miniBatchFraction: Double = 0.05
private var optimizeDocConcentration: Boolean = false
// internal data structure
private var docs: RDD[(Long, Vector)] = null
/** Dirichlet parameter for the posterior over topics */
private var lambda: BDM[Double] = null
/** (for debugging) Get parameter for topics */
private[clustering] def getLambda: BDM[Double] = lambda
/** Current iteration (count of invocations of [[next()]]) */
private var iteration: Int = 0
private var gammaShape: Double = 100
/**
* A (positive) learning parameter that downweights early iterations. Larger values make early
* iterations count less.
*/
@Since("1.4.0")
def getTau0: Double = this.tau0
/**
* A (positive) learning parameter that downweights early iterations. Larger values make early
* iterations count less.
* Default: 1024, following the original Online LDA paper.
*/
@Since("1.4.0")
def setTau0(tau0: Double): this.type = {
require(tau0 > 0, s"LDA tau0 must be positive, but was set to $tau0")
this.tau0 = tau0
this
}
/**
* Learning rate: exponential decay rate
*/
@Since("1.4.0")
def getKappa: Double = this.kappa
/**
* Learning rate: exponential decay rate---should be between
* (0.5, 1.0] to guarantee asymptotic convergence.
* Default: 0.51, based on the original Online LDA paper.
*/
@Since("1.4.0")
def setKappa(kappa: Double): this.type = {
require(kappa >= 0, s"Online LDA kappa must be nonnegative, but was set to $kappa")
this.kappa = kappa
this
}
/**
* Mini-batch fraction, which sets the fraction of document sampled and used in each iteration
*/
@Since("1.4.0")
def getMiniBatchFraction: Double = this.miniBatchFraction
/**
* Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in
* each iteration.
*
* @note This should be adjusted in synch with `LDA.setMaxIterations()`
* so the entire corpus is used. Specifically, set both so that
* maxIterations * miniBatchFraction is at least 1.
*
* Default: 0.05, i.e., 5% of total documents.
*/
@Since("1.4.0")
def setMiniBatchFraction(miniBatchFraction: Double): this.type = {
require(miniBatchFraction > 0.0 && miniBatchFraction <= 1.0,
s"Online LDA miniBatchFraction must be in range (0,1], but was set to $miniBatchFraction")
this.miniBatchFraction = miniBatchFraction
this
}
/**
* Optimize docConcentration, indicates whether docConcentration (Dirichlet parameter for
* document-topic distribution) will be optimized during training.
*/
@Since("1.5.0")
def getOptimizeDocConcentration: Boolean = this.optimizeDocConcentration
/**
* Sets whether to optimize docConcentration parameter during training.
*
* Default: false
*/
@Since("1.5.0")
def setOptimizeDocConcentration(optimizeDocConcentration: Boolean): this.type = {
this.optimizeDocConcentration = optimizeDocConcentration
this
}
/**
* Set the Dirichlet parameter for the posterior over topics.
* This is only used for testing now. In the future, it can help support training stop/resume.
*/
private[clustering] def setLambda(lambda: BDM[Double]): this.type = {
this.lambda = lambda
this
}
/**
* Used for random initialization of the variational parameters.
* Larger value produces values closer to 1.0.
* This is only used for testing currently.
*/
private[clustering] def setGammaShape(shape: Double): this.type = {
this.gammaShape = shape
this
}
/**
* Sets whether to sample mini-batches with or without replacement. (default = true)
* This is only used for testing currently.
*/
private[clustering] def setSampleWithReplacement(replace: Boolean): this.type = {
this.sampleWithReplacement = replace
this
}
override private[clustering] def initialize(
docs: RDD[(Long, Vector)],
lda: LDA): OnlineLDAOptimizer = {
this.k = lda.getK
this.corpusSize = docs.count()
this.vocabSize = docs.first()._2.size
this.alpha = if (lda.getAsymmetricDocConcentration.size == 1) {
if (lda.getAsymmetricDocConcentration(0) == -1) Vectors.dense(Array.fill(k)(1.0 / k))
else {
require(lda.getAsymmetricDocConcentration(0) >= 0,
s"all entries in alpha must be >=0, got: $alpha")
Vectors.dense(Array.fill(k)(lda.getAsymmetricDocConcentration(0)))
}
} else {
require(lda.getAsymmetricDocConcentration.size == k,
s"alpha must have length k, got: $alpha")
lda.getAsymmetricDocConcentration.foreachActive { case (_, x) =>
require(x >= 0, s"all entries in alpha must be >= 0, got: $alpha")
}
lda.getAsymmetricDocConcentration
}
this.eta = if (lda.getTopicConcentration == -1) 1.0 / k else lda.getTopicConcentration
this.randomGenerator = new Random(lda.getSeed)
this.docs = docs
if (this.docs.getStorageLevel == StorageLevel.NONE) {
logWarning("The input data is not directly cached, which may hurt performance if its"
+ " parent RDDs are also uncached.")
}
// Initialize the variational distribution q(beta|lambda)
this.lambda = getGammaMatrix(k, vocabSize)
this.iteration = 0
this
}
override private[clustering] def next(): OnlineLDAOptimizer = {
val batch = docs.sample(withReplacement = sampleWithReplacement, miniBatchFraction,
randomGenerator.nextLong())
if (batch.isEmpty()) return this
submitMiniBatch(batch)
}
/**
* Submit a subset (like 1%, decide by the miniBatchFraction) of the corpus to the Online LDA
* model, and it will update the topic distribution adaptively for the terms appearing in the
* subset.
*/
private[clustering] def submitMiniBatch(batch: RDD[(Long, Vector)]): OnlineLDAOptimizer = {
iteration += 1
val k = this.k
val vocabSize = this.vocabSize
val expElogbeta = exp(LDAUtils.dirichletExpectation(lambda)).t
val expElogbetaBc = batch.sparkContext.broadcast(expElogbeta)
val alpha = this.alpha.asBreeze
val gammaShape = this.gammaShape
val optimizeDocConcentration = this.optimizeDocConcentration
val seed = randomGenerator.nextLong()
// If and only if optimizeDocConcentration is set true,
// we calculate logphat in the same pass as other statistics.
// No calculation of logphat happens otherwise.
val logphatPartOptionBase = () => if (optimizeDocConcentration) {
Some(BDV.zeros[Double](k))
} else {
None
}
val stats: RDD[(BDM[Double], Option[BDV[Double]], Long)] = batch.mapPartitionsWithIndex {
(index, docs) =>
val nonEmptyDocs = docs.filter(_._2.numNonzeros > 0)
val stat = BDM.zeros[Double](k, vocabSize)
val logphatPartOption = logphatPartOptionBase()
var nonEmptyDocCount: Long = 0L
nonEmptyDocs.foreach { case (_, termCounts: Vector) =>
nonEmptyDocCount += 1
val (gammad, sstats, ids) = OnlineLDAOptimizer.variationalTopicInference(
termCounts, expElogbetaBc.value, alpha, gammaShape, k, seed + index)
stat(::, ids) := stat(::, ids) + sstats
logphatPartOption.foreach(_ += LDAUtils.dirichletExpectation(gammad))
}
Iterator((stat, logphatPartOption, nonEmptyDocCount))
}
def elementWiseSum(
u: (BDM[Double], Option[BDV[Double]], Long),
v: (BDM[Double], Option[BDV[Double]], Long)): (BDM[Double], Option[BDV[Double]], Long) = {
val vec =
if (u._1 == null) {
v._1
} else if (v._1 == null) {
u._1
} else {
u._1 += v._1
u._1
}
u._2.foreach(_ += v._2.get)
(vec, u._2, u._3 + v._3)
}
val (statsSum: BDM[Double], logphatOption: Option[BDV[Double]], nonEmptyDocsN: Long) = stats
.treeAggregate((null.asInstanceOf[BDM[Double]], logphatPartOptionBase(), 0L))(
elementWiseSum, elementWiseSum
)
expElogbetaBc.destroy()
if (nonEmptyDocsN == 0) {
logWarning("No non-empty documents were submitted in the batch.")
// Therefore, there is no need to update any of the model parameters
return this
}
val batchResult = statsSum *:* expElogbeta.t
// Note that this is an optimization to avoid batch.count
val batchSize = (miniBatchFraction * corpusSize).ceil.toInt
updateLambda(batchResult, batchSize)
logphatOption.foreach(_ /= nonEmptyDocsN.toDouble)
logphatOption.foreach(updateAlpha(_, nonEmptyDocsN))
this
}
/**
* Update lambda based on the batch submitted. batchSize can be different for each iteration.
*/
private def updateLambda(stat: BDM[Double], batchSize: Int): Unit = {
// weight of the mini-batch.
val weight = rho()
// Update lambda based on documents.
lambda := (1 - weight) * lambda +
weight * (stat * (corpusSize.toDouble / batchSize.toDouble) + eta)
}
/**
* Update alpha based on `logphat`.
* Uses Newton-Rhapson method.
* @see Section 3.3, Huang: Maximum Likelihood Estimation of Dirichlet Distribution Parameters
* (http://jonathan-huang.org/research/dirichlet/dirichlet.pdf)
* @param logphat Expectation of estimated log-posterior distribution of
* topics in a document averaged over the batch.
* @param nonEmptyDocsN number of non-empty documents
*/
private def updateAlpha(logphat: BDV[Double], nonEmptyDocsN: Double): Unit = {
val weight = rho()
val alpha = this.alpha.asBreeze.toDenseVector
val gradf = nonEmptyDocsN * (-LDAUtils.dirichletExpectation(alpha) + logphat)
val c = nonEmptyDocsN * trigamma(sum(alpha))
val q = -nonEmptyDocsN * trigamma(alpha)
val b = sum(gradf / q) / (1D / c + sum(1D / q))
val dalpha = -(gradf - b) / q
if (all((weight * dalpha + alpha) >:> 0D)) {
alpha :+= weight * dalpha
this.alpha = Vectors.dense(alpha.toArray)
}
}
/** Calculate learning rate rho for the current [[iteration]]. */
private def rho(): Double = {
math.pow(getTau0 + this.iteration, -getKappa)
}
/**
* Get a random matrix to initialize lambda.
*/
private def getGammaMatrix(row: Int, col: Int): BDM[Double] = {
val randBasis = new RandBasis(new org.apache.commons.math3.random.MersenneTwister(
randomGenerator.nextLong()))
val gammaRandomGenerator = new Gamma(gammaShape, 1.0 / gammaShape)(randBasis)
val temp = gammaRandomGenerator.sample(row * col).toArray
new BDM[Double](col, row, temp).t
}
override private[clustering] def getLDAModel(iterationTimes: Array[Double]): LDAModel = {
new LocalLDAModel(Matrices.fromBreeze(lambda).transpose, alpha, eta)
.setSeed(randomGenerator.nextLong())
}
}
/**
* Serializable companion object containing helper methods and shared code for
* [[OnlineLDAOptimizer]] and [[LocalLDAModel]].
*/
private[spark] object OnlineLDAOptimizer {
/**
* Uses variational inference to infer the topic distribution `gammad` given the term counts
* for a document. `termCounts` must contain at least one non-zero entry, otherwise Breeze will
* throw a BLAS error.
*
* An optimization (Lee, Seung: Algorithms for non-negative matrix factorization, NIPS 2001)
* avoids explicit computation of variational parameter `phi`.
* @see here
*
* @return Returns a tuple of `gammad` - estimate of gamma, the topic distribution, `sstatsd` -
* statistics for updating lambda and `ids` - list of termCounts vector indices.
*/
private[spark] def variationalTopicInference(
indices: List[Int],
values: Array[Double],
expElogbeta: BDM[Double],
alpha: breeze.linalg.Vector[Double],
gammaShape: Double,
k: Int,
seed: Long): (BDV[Double], BDM[Double], List[Int]) = {
// Initialize the variational distribution q(theta|gamma) for the mini-batch
val randBasis = new RandBasis(new org.apache.commons.math3.random.MersenneTwister(seed))
val gammad: BDV[Double] =
new Gamma(gammaShape, 1.0 / gammaShape)(randBasis).samplesVector(k) // K
val expElogthetad: BDV[Double] = exp(LDAUtils.dirichletExpectation(gammad)) // K
val expElogbetad = expElogbeta(indices, ::).toDenseMatrix // ids * K
val phiNorm: BDV[Double] = expElogbetad * expElogthetad +:+ 1e-100 // ids
var meanGammaChange = 1D
val ctsVector = new BDV[Double](values) // ids
// Iterate between gamma and phi until convergence
while (meanGammaChange > 1e-3) {
val lastgamma = gammad.copy
// K K * ids ids
gammad := (expElogthetad *:* (expElogbetad.t * (ctsVector /:/ phiNorm))) +:+ alpha
expElogthetad := exp(LDAUtils.dirichletExpectation(gammad))
// TODO: Keep more values in log space, and only exponentiate when needed.
phiNorm := expElogbetad * expElogthetad +:+ 1e-100
meanGammaChange = sum(abs(gammad - lastgamma)) / k
}
val sstatsd = expElogthetad.asDenseMatrix.t * (ctsVector /:/ phiNorm).asDenseMatrix
(gammad, sstatsd, indices)
}
private[clustering] def variationalTopicInference(
termCounts: Vector,
expElogbeta: BDM[Double],
alpha: breeze.linalg.Vector[Double],
gammaShape: Double,
k: Int,
seed: Long): (BDV[Double], BDM[Double], List[Int]) = {
val (ids: List[Int], cts: Array[Double]) = termCounts match {
case v: DenseVector => (List.range(0, v.size), v.values)
case v: SparseVector => (v.indices.toList, v.values)
}
variationalTopicInference(ids, cts, expElogbeta, alpha, gammaShape, k, seed)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy