org.apache.spark.sql.DataFrameReader.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql
import java.util.Properties
import scala.collection.JavaConverters._
import org.apache.spark.Partition
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.execution.LogicalRDD
import org.apache.spark.sql.execution.datasources.{DataSource, LogicalRelation}
import org.apache.spark.sql.execution.datasources.jdbc.{JDBCPartition, JDBCPartitioningInfo, JDBCRelation}
import org.apache.spark.sql.execution.datasources.json.{InferSchema, JacksonParser, JSONOptions}
import org.apache.spark.sql.types.StructType
/**
* Interface used to load a [[Dataset]] from external storage systems (e.g. file systems,
* key-value stores, etc). Use [[SparkSession.read]] to access this.
*
* @since 1.4.0
*/
class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
/**
* Specifies the input data source format.
*
* @since 1.4.0
*/
def format(source: String): DataFrameReader = {
this.source = source
this
}
/**
* Specifies the input schema. Some data sources (e.g. JSON) can infer the input schema
* automatically from data. By specifying the schema here, the underlying data source can
* skip the schema inference step, and thus speed up data loading.
*
* @since 1.4.0
*/
def schema(schema: StructType): DataFrameReader = {
this.userSpecifiedSchema = Option(schema)
this
}
/**
* Adds an input option for the underlying data source.
*
* @since 1.4.0
*/
def option(key: String, value: String): DataFrameReader = {
this.extraOptions += (key -> value)
this
}
/**
* Adds an input option for the underlying data source.
*
* @since 2.0.0
*/
def option(key: String, value: Boolean): DataFrameReader = option(key, value.toString)
/**
* Adds an input option for the underlying data source.
*
* @since 2.0.0
*/
def option(key: String, value: Long): DataFrameReader = option(key, value.toString)
/**
* Adds an input option for the underlying data source.
*
* @since 2.0.0
*/
def option(key: String, value: Double): DataFrameReader = option(key, value.toString)
/**
* (Scala-specific) Adds input options for the underlying data source.
*
* @since 1.4.0
*/
def options(options: scala.collection.Map[String, String]): DataFrameReader = {
this.extraOptions ++= options
this
}
/**
* Adds input options for the underlying data source.
*
* @since 1.4.0
*/
def options(options: java.util.Map[String, String]): DataFrameReader = {
this.options(options.asScala)
this
}
/**
* Loads input in as a [[DataFrame]], for data sources that don't require a path (e.g. external
* key-value stores).
*
* @since 1.4.0
*/
def load(): DataFrame = {
load(Seq.empty: _*) // force invocation of `load(...varargs...)`
}
/**
* Loads input in as a [[DataFrame]], for data sources that require a path (e.g. data backed by
* a local or distributed file system).
*
* @since 1.4.0
*/
def load(path: String): DataFrame = {
option("path", path).load(Seq.empty: _*) // force invocation of `load(...varargs...)`
}
/**
* Loads input in as a [[DataFrame]], for data sources that support multiple paths.
* Only works if the source is a HadoopFsRelationProvider.
*
* @since 1.6.0
*/
@scala.annotation.varargs
def load(paths: String*): DataFrame = {
sparkSession.baseRelationToDataFrame(
DataSource.apply(
sparkSession,
paths = paths,
userSpecifiedSchema = userSpecifiedSchema,
className = source,
options = extraOptions.toMap).resolveRelation())
}
/**
* Construct a [[DataFrame]] representing the database table accessible via JDBC URL
* url named table and connection properties.
*
* @since 1.4.0
*/
def jdbc(url: String, table: String, properties: Properties): DataFrame = {
jdbc(url, table, JDBCRelation.columnPartition(null), properties)
}
/**
* Construct a [[DataFrame]] representing the database table accessible via JDBC URL
* url named table. Partitions of the table will be retrieved in parallel based on the parameters
* passed to this function.
*
* Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash
* your external database systems.
*
* @param url JDBC database url of the form `jdbc:subprotocol:subname`.
* @param table Name of the table in the external database.
* @param columnName the name of a column of integral type that will be used for partitioning.
* @param lowerBound the minimum value of `columnName` used to decide partition stride.
* @param upperBound the maximum value of `columnName` used to decide partition stride.
* @param numPartitions the number of partitions. This, along with `lowerBound` (inclusive),
* `upperBound` (exclusive), form partition strides for generated WHERE
* clause expressions used to split the column `columnName` evenly.
* @param connectionProperties JDBC database connection arguments, a list of arbitrary string
* tag/value. Normally at least a "user" and "password" property
* should be included. "fetchsize" can be used to control the
* number of rows per fetch.
* @since 1.4.0
*/
def jdbc(
url: String,
table: String,
columnName: String,
lowerBound: Long,
upperBound: Long,
numPartitions: Int,
connectionProperties: Properties): DataFrame = {
val partitioning = JDBCPartitioningInfo(columnName, lowerBound, upperBound, numPartitions)
val parts = JDBCRelation.columnPartition(partitioning)
jdbc(url, table, parts, connectionProperties)
}
/**
* Construct a [[DataFrame]] representing the database table accessible via JDBC URL
* url named table using connection properties. The `predicates` parameter gives a list
* expressions suitable for inclusion in WHERE clauses; each one defines one partition
* of the [[DataFrame]].
*
* Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash
* your external database systems.
*
* @param url JDBC database url of the form `jdbc:subprotocol:subname`
* @param table Name of the table in the external database.
* @param predicates Condition in the where clause for each partition.
* @param connectionProperties JDBC database connection arguments, a list of arbitrary string
* tag/value. Normally at least a "user" and "password" property
* should be included. "fetchsize" can be used to control the
* number of rows per fetch.
* @since 1.4.0
*/
def jdbc(
url: String,
table: String,
predicates: Array[String],
connectionProperties: Properties): DataFrame = {
val parts: Array[Partition] = predicates.zipWithIndex.map { case (part, i) =>
JDBCPartition(part, i) : Partition
}
jdbc(url, table, parts, connectionProperties)
}
private def jdbc(
url: String,
table: String,
parts: Array[Partition],
connectionProperties: Properties): DataFrame = {
val props = new Properties()
extraOptions.foreach { case (key, value) =>
props.put(key, value)
}
// connectionProperties should override settings in extraOptions
props.putAll(connectionProperties)
val relation = JDBCRelation(url, table, parts, props)(sparkSession)
sparkSession.baseRelationToDataFrame(relation)
}
/**
* Loads a JSON file (one object per line) and returns the result as a [[DataFrame]].
* See the documentation on the overloaded `json()` method with varargs for more details.
*
* @since 1.4.0
*/
def json(path: String): DataFrame = {
// This method ensures that calls that explicit need single argument works, see SPARK-16009
json(Seq(path): _*)
}
/**
* Loads a JSON file (one object per line) and returns the result as a [[DataFrame]].
*
* This function goes through the input once to determine the input schema. If you know the
* schema in advance, use the version that specifies the schema to avoid the extra scan.
*
* You can set the following JSON-specific options to deal with non-standard JSON files:
*
* - `primitivesAsString` (default `false`): infers all primitive values as a string type
* - `prefersDecimal` (default `false`): infers all floating-point values as a decimal
* type. If the values do not fit in decimal, then it infers them as doubles.
* - `allowComments` (default `false`): ignores Java/C++ style comment in JSON records
* - `allowUnquotedFieldNames` (default `false`): allows unquoted JSON field names
* - `allowSingleQuotes` (default `true`): allows single quotes in addition to double quotes
*
* - `allowNumericLeadingZeros` (default `false`): allows leading zeros in numbers
* (e.g. 00012)
* - `allowBackslashEscapingAnyCharacter` (default `false`): allows accepting quoting of all
* character using backslash quoting mechanism
* - `mode` (default `PERMISSIVE`): allows a mode for dealing with corrupt records
* during parsing.
*
* - `PERMISSIVE` : sets other fields to `null` when it meets a corrupted record, and puts
* the malformed string into a new field configured by `columnNameOfCorruptRecord`. When
* a schema is set by user, it sets `null` for extra fields.
* - `DROPMALFORMED` : ignores the whole corrupted records.
* - `FAILFAST` : throws an exception when it meets corrupted records.
*
*
* - `columnNameOfCorruptRecord` (default is the value specified in
* `spark.sql.columnNameOfCorruptRecord`): allows renaming the new field having malformed string
* created by `PERMISSIVE` mode. This overrides `spark.sql.columnNameOfCorruptRecord`.
* - `dateFormat` (default `yyyy-MM-dd`): sets the string that indicates a date format.
* Custom date formats follow the formats at `java.text.SimpleDateFormat`. This applies to
* date type.
* - `timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSZZ`): sets the string that
* indicates a timestamp format. Custom date formats follow the formats at
* `java.text.SimpleDateFormat`. This applies to timestamp type.
*
* @since 2.0.0
*/
@scala.annotation.varargs
def json(paths: String*): DataFrame = format("json").load(paths : _*)
/**
* Loads a `JavaRDD[String]` storing JSON objects (one object per record) and
* returns the result as a [[DataFrame]].
*
* Unless the schema is specified using [[schema]] function, this function goes through the
* input once to determine the input schema.
*
* @param jsonRDD input RDD with one JSON object per record
* @since 1.4.0
*/
def json(jsonRDD: JavaRDD[String]): DataFrame = json(jsonRDD.rdd)
/**
* Loads an `RDD[String]` storing JSON objects (one object per record) and
* returns the result as a [[DataFrame]].
*
* Unless the schema is specified using [[schema]] function, this function goes through the
* input once to determine the input schema.
*
* @param jsonRDD input RDD with one JSON object per record
* @since 1.4.0
*/
def json(jsonRDD: RDD[String]): DataFrame = {
val parsedOptions: JSONOptions = new JSONOptions(extraOptions.toMap)
val columnNameOfCorruptRecord =
parsedOptions.columnNameOfCorruptRecord
.getOrElse(sparkSession.sessionState.conf.columnNameOfCorruptRecord)
val schema = userSpecifiedSchema.getOrElse {
InferSchema.infer(
jsonRDD,
columnNameOfCorruptRecord,
parsedOptions)
}
Dataset.ofRows(
sparkSession,
LogicalRDD(
schema.toAttributes,
JacksonParser.parse(
jsonRDD,
schema,
columnNameOfCorruptRecord,
parsedOptions))(sparkSession))
}
/**
* Loads a CSV file and returns the result as a [[DataFrame]]. See the documentation on the
* other overloaded `csv()` method for more details.
*
* @since 2.0.0
*/
def csv(path: String): DataFrame = {
// This method ensures that calls that explicit need single argument works, see SPARK-16009
csv(Seq(path): _*)
}
/**
* Loads a CSV file and returns the result as a [[DataFrame]].
*
* This function will go through the input once to determine the input schema if `inferSchema`
* is enabled. To avoid going through the entire data once, disable `inferSchema` option or
* specify the schema explicitly using [[schema]].
*
* You can set the following CSV-specific options to deal with CSV files:
*
* - `sep` (default `,`): sets the single character as a separator for each
* field and value.
* - `encoding` (default `UTF-8`): decodes the CSV files by the given encoding
* type.
* - `quote` (default `"`): sets the single character used for escaping quoted values where
* the separator can be part of the value. If you would like to turn off quotations, you need to
* set not `null` but an empty string. This behaviour is different form
* `com.databricks.spark.csv`.
* - `escape` (default `\`): sets the single character used for escaping quotes inside
* an already quoted value.
* - `comment` (default empty string): sets the single character used for skipping lines
* beginning with this character. By default, it is disabled.
* - `header` (default `false`): uses the first line as names of columns.
* - `inferSchema` (default `false`): infers the input schema automatically from data. It
* requires one extra pass over the data.
* - `ignoreLeadingWhiteSpace` (default `false`): defines whether or not leading whitespaces
* from values being read should be skipped.
* - `ignoreTrailingWhiteSpace` (default `false`): defines whether or not trailing
* whitespaces from values being read should be skipped.
* - `nullValue` (default empty string): sets the string representation of a null value. Since
* 2.0.1, this applies to all supported types including the string type.
* - `nanValue` (default `NaN`): sets the string representation of a non-number" value.
* - `positiveInf` (default `Inf`): sets the string representation of a positive infinity
* value.
* - `negativeInf` (default `-Inf`): sets the string representation of a negative infinity
* value.
* - `dateFormat` (default `yyyy-MM-dd`): sets the string that indicates a date format.
* Custom date formats follow the formats at `java.text.SimpleDateFormat`. This applies to
* date type.
* - `timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSZZ`): sets the string that
* indicates a timestamp format. Custom date formats follow the formats at
* `java.text.SimpleDateFormat`. This applies to timestamp type.
* `java.sql.Timestamp.valueOf()` and `java.sql.Date.valueOf()` or ISO 8601 format.
* - `maxColumns` (default `20480`): defines a hard limit of how many columns
* a record can have.
* - `maxCharsPerColumn` (default `1000000`): defines the maximum number of characters allowed
* for any given value being read.
* - `maxMalformedLogPerPartition` (default `10`): sets the maximum number of malformed rows
* Spark will log for each partition. Malformed records beyond this number will be ignored.
* - `mode` (default `PERMISSIVE`): allows a mode for dealing with corrupt records
* during parsing.
*
* - `PERMISSIVE` : sets other fields to `null` when it meets a corrupted record. When
* a schema is set by user, it sets `null` for extra fields.
* - `DROPMALFORMED` : ignores the whole corrupted records.
* - `FAILFAST` : throws an exception when it meets corrupted records.
*
*
*
* @since 2.0.0
*/
@scala.annotation.varargs
def csv(paths: String*): DataFrame = format("csv").load(paths : _*)
/**
* Loads a Parquet file, returning the result as a [[DataFrame]]. See the documentation
* on the other overloaded `parquet()` method for more details.
*
* @since 2.0.0
*/
def parquet(path: String): DataFrame = {
// This method ensures that calls that explicit need single argument works, see SPARK-16009
parquet(Seq(path): _*)
}
/**
* Loads a Parquet file, returning the result as a [[DataFrame]].
*
* You can set the following Parquet-specific option(s) for reading Parquet files:
*
* - `mergeSchema` (default is the value specified in `spark.sql.parquet.mergeSchema`): sets
* whether we should merge schemas collected from all Parquet part-files. This will override
* `spark.sql.parquet.mergeSchema`.
*
* @since 1.4.0
*/
@scala.annotation.varargs
def parquet(paths: String*): DataFrame = {
format("parquet").load(paths: _*)
}
/**
* Loads an ORC file and returns the result as a [[DataFrame]].
*
* @param path input path
* @since 1.5.0
* @note Currently, this method can only be used after enabling Hive support.
*/
def orc(path: String): DataFrame = {
// This method ensures that calls that explicit need single argument works, see SPARK-16009
orc(Seq(path): _*)
}
/**
* Loads an ORC file and returns the result as a [[DataFrame]].
*
* @param paths input paths
* @since 2.0.0
* @note Currently, this method can only be used after enabling Hive support.
*/
@scala.annotation.varargs
def orc(paths: String*): DataFrame = format("orc").load(paths: _*)
/**
* Returns the specified table as a [[DataFrame]].
*
* @since 1.4.0
*/
def table(tableName: String): DataFrame = {
Dataset.ofRows(sparkSession,
sparkSession.sessionState.catalog.lookupRelation(
sparkSession.sessionState.sqlParser.parseTableIdentifier(tableName)))
}
/**
* Loads text files and returns a [[DataFrame]] whose schema starts with a string column named
* "value", and followed by partitioned columns if there are any. See the documentation on
* the other overloaded `text()` method for more details.
*
* @since 2.0.0
*/
def text(path: String): DataFrame = {
// This method ensures that calls that explicit need single argument works, see SPARK-16009
text(Seq(path): _*)
}
/**
* Loads text files and returns a [[DataFrame]] whose schema starts with a string column named
* "value", and followed by partitioned columns if there are any.
*
* Each line in the text files is a new row in the resulting DataFrame. For example:
* {{{
* // Scala:
* spark.read.text("/path/to/spark/README.md")
*
* // Java:
* spark.read().text("/path/to/spark/README.md")
* }}}
*
* @param paths input paths
* @since 1.6.0
*/
@scala.annotation.varargs
def text(paths: String*): DataFrame = format("text").load(paths : _*)
/**
* Loads text files and returns a [[Dataset]] of String. See the documentation on the
* other overloaded `textFile()` method for more details.
* @since 2.0.0
*/
def textFile(path: String): Dataset[String] = {
// This method ensures that calls that explicit need single argument works, see SPARK-16009
textFile(Seq(path): _*)
}
/**
* Loads text files and returns a [[Dataset]] of String. The underlying schema of the Dataset
* contains a single string column named "value".
*
* If the directory structure of the text files contains partitioning information, those are
* ignored in the resulting Dataset. To include partitioning information as columns, use `text`.
*
* Each line in the text files is a new element in the resulting Dataset. For example:
* {{{
* // Scala:
* spark.read.textFile("/path/to/spark/README.md")
*
* // Java:
* spark.read().textFile("/path/to/spark/README.md")
* }}}
*
* @param paths input path
* @since 2.0.0
*/
@scala.annotation.varargs
def textFile(paths: String*): Dataset[String] = {
if (userSpecifiedSchema.nonEmpty) {
throw new AnalysisException("User specified schema not supported with `textFile`")
}
text(paths : _*).select("value").as[String](sparkSession.implicits.newStringEncoder)
}
///////////////////////////////////////////////////////////////////////////////////////
// Builder pattern config options
///////////////////////////////////////////////////////////////////////////////////////
private var source: String = sparkSession.sessionState.conf.defaultDataSourceName
private var userSpecifiedSchema: Option[StructType] = None
private var extraOptions = new scala.collection.mutable.HashMap[String, String]
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy