org.apache.spark.sql.streaming.DataStreamReader.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.streaming
import scala.collection.JavaConverters._
import org.apache.spark.annotation.Experimental
import org.apache.spark.internal.Logging
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
import org.apache.spark.sql.execution.datasources.DataSource
import org.apache.spark.sql.execution.streaming.StreamingRelation
import org.apache.spark.sql.types.StructType
/**
* Interface used to load a streaming [[Dataset]] from external storage systems (e.g. file systems,
* key-value stores, etc). Use [[SparkSession.readStream]] to access this.
*
* @since 2.0.0
*/
@Experimental
final class DataStreamReader private[sql](sparkSession: SparkSession) extends Logging {
/**
* :: Experimental ::
* Specifies the input data source format.
*
* @since 2.0.0
*/
@Experimental
def format(source: String): DataStreamReader = {
this.source = source
this
}
/**
* :: Experimental ::
* Specifies the input schema. Some data sources (e.g. JSON) can infer the input schema
* automatically from data. By specifying the schema here, the underlying data source can
* skip the schema inference step, and thus speed up data loading.
*
* @since 2.0.0
*/
@Experimental
def schema(schema: StructType): DataStreamReader = {
this.userSpecifiedSchema = Option(schema)
this
}
/**
* :: Experimental ::
* Adds an input option for the underlying data source.
*
* @since 2.0.0
*/
@Experimental
def option(key: String, value: String): DataStreamReader = {
this.extraOptions += (key -> value)
this
}
/**
* :: Experimental ::
* Adds an input option for the underlying data source.
*
* @since 2.0.0
*/
@Experimental
def option(key: String, value: Boolean): DataStreamReader = option(key, value.toString)
/**
* :: Experimental ::
* Adds an input option for the underlying data source.
*
* @since 2.0.0
*/
@Experimental
def option(key: String, value: Long): DataStreamReader = option(key, value.toString)
/**
* :: Experimental ::
* Adds an input option for the underlying data source.
*
* @since 2.0.0
*/
@Experimental
def option(key: String, value: Double): DataStreamReader = option(key, value.toString)
/**
* :: Experimental ::
* (Scala-specific) Adds input options for the underlying data source.
*
* @since 2.0.0
*/
@Experimental
def options(options: scala.collection.Map[String, String]): DataStreamReader = {
this.extraOptions ++= options
this
}
/**
* :: Experimental ::
* Adds input options for the underlying data source.
*
* @since 2.0.0
*/
@Experimental
def options(options: java.util.Map[String, String]): DataStreamReader = {
this.options(options.asScala)
this
}
/**
* :: Experimental ::
* Loads input data stream in as a [[DataFrame]], for data streams that don't require a path
* (e.g. external key-value stores).
*
* @since 2.0.0
*/
@Experimental
def load(): DataFrame = {
val dataSource =
DataSource(
sparkSession,
userSpecifiedSchema = userSpecifiedSchema,
className = source,
options = extraOptions.toMap)
Dataset.ofRows(sparkSession, StreamingRelation(dataSource))
}
/**
* :: Experimental ::
* Loads input in as a [[DataFrame]], for data streams that read from some path.
*
* @since 2.0.0
*/
@Experimental
def load(path: String): DataFrame = {
option("path", path).load()
}
/**
* :: Experimental ::
* Loads a JSON file stream (one object per line) and returns the result as a [[DataFrame]].
*
* This function goes through the input once to determine the input schema. If you know the
* schema in advance, use the version that specifies the schema to avoid the extra scan.
*
* You can set the following JSON-specific options to deal with non-standard JSON files:
*
* - `maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
* considered in every trigger.
* - `primitivesAsString` (default `false`): infers all primitive values as a string type
* - `prefersDecimal` (default `false`): infers all floating-point values as a decimal
* type. If the values do not fit in decimal, then it infers them as doubles.
* - `allowComments` (default `false`): ignores Java/C++ style comment in JSON records
* - `allowUnquotedFieldNames` (default `false`): allows unquoted JSON field names
* - `allowSingleQuotes` (default `true`): allows single quotes in addition to double quotes
*
* - `allowNumericLeadingZeros` (default `false`): allows leading zeros in numbers
* (e.g. 00012)
* - `allowBackslashEscapingAnyCharacter` (default `false`): allows accepting quoting of all
* character using backslash quoting mechanism
* - `mode` (default `PERMISSIVE`): allows a mode for dealing with corrupt records
* during parsing.
*
* - `PERMISSIVE` : sets other fields to `null` when it meets a corrupted record, and puts
* the malformed string into a new field configured by `columnNameOfCorruptRecord`. When
* a schema is set by user, it sets `null` for extra fields.
* - `DROPMALFORMED` : ignores the whole corrupted records.
* - `FAILFAST` : throws an exception when it meets corrupted records.
*
*
* - `columnNameOfCorruptRecord` (default is the value specified in
* `spark.sql.columnNameOfCorruptRecord`): allows renaming the new field having malformed string
* created by `PERMISSIVE` mode. This overrides `spark.sql.columnNameOfCorruptRecord`.
* - `dateFormat` (default `yyyy-MM-dd`): sets the string that indicates a date format.
* Custom date formats follow the formats at `java.text.SimpleDateFormat`. This applies to
* date type.
* - `timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSZZ`): sets the string that
* indicates a timestamp format. Custom date formats follow the formats at
* `java.text.SimpleDateFormat`. This applies to timestamp type.
*
*
* @since 2.0.0
*/
@Experimental
def json(path: String): DataFrame = format("json").load(path)
/**
* :: Experimental ::
* Loads a CSV file stream and returns the result as a [[DataFrame]].
*
* This function will go through the input once to determine the input schema if `inferSchema`
* is enabled. To avoid going through the entire data once, disable `inferSchema` option or
* specify the schema explicitly using [[schema]].
*
* You can set the following CSV-specific options to deal with CSV files:
*
* - `maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
* considered in every trigger.
* - `sep` (default `,`): sets the single character as a separator for each
* field and value.
* - `encoding` (default `UTF-8`): decodes the CSV files by the given encoding
* type.
* - `quote` (default `"`): sets the single character used for escaping quoted values where
* the separator can be part of the value. If you would like to turn off quotations, you need to
* set not `null` but an empty string. This behaviour is different form
* `com.databricks.spark.csv`.
* - `escape` (default `\`): sets the single character used for escaping quotes inside
* an already quoted value.
* - `comment` (default empty string): sets the single character used for skipping lines
* beginning with this character. By default, it is disabled.
* - `header` (default `false`): uses the first line as names of columns.
* - `inferSchema` (default `false`): infers the input schema automatically from data. It
* requires one extra pass over the data.
* - `ignoreLeadingWhiteSpace` (default `false`): defines whether or not leading whitespaces
* from values being read should be skipped.
* - `ignoreTrailingWhiteSpace` (default `false`): defines whether or not trailing
* whitespaces from values being read should be skipped.
* - `nullValue` (default empty string): sets the string representation of a null value. Since
* 2.0.1, this applies to all supported types including the string type.
* - `nanValue` (default `NaN`): sets the string representation of a non-number" value.
* - `positiveInf` (default `Inf`): sets the string representation of a positive infinity
* value.
* - `negativeInf` (default `-Inf`): sets the string representation of a negative infinity
* value.
* - `dateFormat` (default `yyyy-MM-dd`): sets the string that indicates a date format.
* Custom date formats follow the formats at `java.text.SimpleDateFormat`. This applies to
* date type.
* - `timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSZZ`): sets the string that
* indicates a timestamp format. Custom date formats follow the formats at
* `java.text.SimpleDateFormat`. This applies to timestamp type.
* - `maxColumns` (default `20480`): defines a hard limit of how many columns
* a record can have.
* - `maxCharsPerColumn` (default `1000000`): defines the maximum number of characters allowed
* for any given value being read.
* - `mode` (default `PERMISSIVE`): allows a mode for dealing with corrupt records
* during parsing.
*
* - `PERMISSIVE` : sets other fields to `null` when it meets a corrupted record. When
* a schema is set by user, it sets `null` for extra fields.
* - `DROPMALFORMED` : ignores the whole corrupted records.
* - `FAILFAST` : throws an exception when it meets corrupted records.
*
*
*
*
* @since 2.0.0
*/
@Experimental
def csv(path: String): DataFrame = format("csv").load(path)
/**
* :: Experimental ::
* Loads a Parquet file stream, returning the result as a [[DataFrame]].
*
* You can set the following Parquet-specific option(s) for reading Parquet files:
*
* - `maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
* considered in every trigger.
* - `mergeSchema` (default is the value specified in `spark.sql.parquet.mergeSchema`): sets
* whether we should merge schemas collected from all Parquet part-files. This will override
* `spark.sql.parquet.mergeSchema`.
*
*
* @since 2.0.0
*/
@Experimental
def parquet(path: String): DataFrame = {
format("parquet").load(path)
}
/**
* :: Experimental ::
* Loads text files and returns a [[DataFrame]] whose schema starts with a string column named
* "value", and followed by partitioned columns if there are any.
*
* Each line in the text files is a new row in the resulting DataFrame. For example:
* {{{
* // Scala:
* spark.readStream.text("/path/to/directory/")
*
* // Java:
* spark.readStream().text("/path/to/directory/")
* }}}
*
* You can set the following text-specific options to deal with text files:
*
* - `maxFilesPerTrigger` (default: no max limit): sets the maximum number of new files to be
* considered in every trigger.
*
*
* @since 2.0.0
*/
@Experimental
def text(path: String): DataFrame = format("text").load(path)
///////////////////////////////////////////////////////////////////////////////////////
// Builder pattern config options
///////////////////////////////////////////////////////////////////////////////////////
private var source: String = sparkSession.sessionState.conf.defaultDataSourceName
private var userSpecifiedSchema: Option[StructType] = None
private var extraOptions = new scala.collection.mutable.HashMap[String, String]
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy