Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, DataOutputStream}
import scala.collection.mutable.ArrayBuffer
import scala.concurrent.ExecutionContext
import org.codehaus.commons.compiler.CompileException
import org.codehaus.janino.InternalCompilerException
import org.apache.spark.{broadcast, SparkEnv}
import org.apache.spark.internal.Logging
import org.apache.spark.io.CompressionCodec
import org.apache.spark.rdd.{RDD, RDDOperationScope}
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.catalyst.{CatalystTypeConverters, InternalRow}
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.codegen.{Predicate => GenPredicate, _}
import org.apache.spark.sql.catalyst.plans.QueryPlan
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.execution.metric.SQLMetric
import org.apache.spark.sql.types.DataType
import org.apache.spark.util.ThreadUtils
/**
* The base class for physical operators.
*
* The naming convention is that physical operators end with "Exec" suffix, e.g. [[ProjectExec]].
*/
abstract class SparkPlan extends QueryPlan[SparkPlan] with Logging with Serializable {
/**
* A handle to the SQL Context that was used to create this plan. Since many operators need
* access to the sqlContext for RDD operations or configuration this field is automatically
* populated by the query planning infrastructure.
*/
@transient final val sqlContext = SparkSession.getActiveSession.map(_.sqlContext).orNull
protected def sparkContext = sqlContext.sparkContext
// sqlContext will be null when SparkPlan nodes are created without the active sessions.
val subexpressionEliminationEnabled: Boolean = if (sqlContext != null) {
sqlContext.conf.subexpressionEliminationEnabled
} else {
false
}
// whether we should fallback when hitting compilation errors caused by codegen
private val codeGenFallBack = (sqlContext == null) || sqlContext.conf.codegenFallback
/** Overridden make copy also propagates sqlContext to copied plan. */
override def makeCopy(newArgs: Array[AnyRef]): SparkPlan = {
if (sqlContext != null) {
SparkSession.setActiveSession(sqlContext.sparkSession)
}
super.makeCopy(newArgs)
}
/**
* @return All metrics containing metrics of this SparkPlan.
*/
def metrics: Map[String, SQLMetric] = Map.empty
/**
* Resets all the metrics.
*/
def resetMetrics(): Unit = {
metrics.valuesIterator.foreach(_.reset())
}
/**
* @return [[SQLMetric]] for the `name`.
*/
def longMetric(name: String): SQLMetric = metrics(name)
// TODO: Move to `DistributedPlan`
/** Specifies how data is partitioned across different nodes in the cluster. */
def outputPartitioning: Partitioning = UnknownPartitioning(0) // TODO: WRONG WIDTH!
/**
* Specifies the data distribution requirements of all the children for this operator. By default
* it's [[UnspecifiedDistribution]] for each child, which means each child can have any
* distribution.
*
* If an operator overwrites this method, and specifies distribution requirements(excluding
* [[UnspecifiedDistribution]] and [[BroadcastDistribution]]) for more than one child, Spark
* guarantees that the outputs of these children will have same number of partitions, so that the
* operator can safely zip partitions of these children's result RDDs. Some operators can leverage
* this guarantee to satisfy some interesting requirement, e.g., non-broadcast joins can specify
* HashClusteredDistribution(a,b) for its left child, and specify HashClusteredDistribution(c,d)
* for its right child, then it's guaranteed that left and right child are co-partitioned by
* a,b/c,d, which means tuples of same value are in the partitions of same index, e.g.,
* (a=1,b=2) and (c=1,d=2) are both in the second partition of left and right child.
*/
def requiredChildDistribution: Seq[Distribution] =
Seq.fill(children.size)(UnspecifiedDistribution)
/** Specifies how data is ordered in each partition. */
def outputOrdering: Seq[SortOrder] = Nil
/** Specifies sort order for each partition requirements on the input data for this operator. */
def requiredChildOrdering: Seq[Seq[SortOrder]] = Seq.fill(children.size)(Nil)
/**
* Returns the result of this query as an RDD[InternalRow] by delegating to `doExecute` after
* preparations.
*
* Concrete implementations of SparkPlan should override `doExecute`.
*/
final def execute(): RDD[InternalRow] = executeQuery {
if (isCanonicalizedPlan) {
throw new IllegalStateException("A canonicalized plan is not supposed to be executed.")
}
doExecute()
}
/**
* Returns the result of this query as a broadcast variable by delegating to `doExecuteBroadcast`
* after preparations.
*
* Concrete implementations of SparkPlan should override `doExecuteBroadcast`.
*/
final def executeBroadcast[T](): broadcast.Broadcast[T] = executeQuery {
if (isCanonicalizedPlan) {
throw new IllegalStateException("A canonicalized plan is not supposed to be executed.")
}
doExecuteBroadcast()
}
/**
* Executes a query after preparing the query and adding query plan information to created RDDs
* for visualization.
*/
protected final def executeQuery[T](query: => T): T = {
RDDOperationScope.withScope(sparkContext, nodeName, false, true) {
prepare()
waitForSubqueries()
query
}
}
/**
* List of (uncorrelated scalar subquery, future holding the subquery result) for this plan node.
* This list is populated by [[prepareSubqueries]], which is called in [[prepare]].
*/
@transient
private val runningSubqueries = new ArrayBuffer[ExecSubqueryExpression]
/**
* Finds scalar subquery expressions in this plan node and starts evaluating them.
*/
protected def prepareSubqueries(): Unit = {
expressions.foreach {
_.collect {
case e: ExecSubqueryExpression =>
e.plan.prepare()
runningSubqueries += e
}
}
}
/**
* Blocks the thread until all subqueries finish evaluation and update the results.
*/
protected def waitForSubqueries(): Unit = synchronized {
// fill in the result of subqueries
runningSubqueries.foreach { sub =>
sub.updateResult()
}
runningSubqueries.clear()
}
/**
* Whether the "prepare" method is called.
*/
private var prepared = false
/**
* Prepares this SparkPlan for execution. It's idempotent.
*/
final def prepare(): Unit = {
// doPrepare() may depend on it's children, we should call prepare() on all the children first.
children.foreach(_.prepare())
synchronized {
if (!prepared) {
prepareSubqueries()
doPrepare()
prepared = true
}
}
}
/**
* Overridden by concrete implementations of SparkPlan. It is guaranteed to run before any
* `execute` of SparkPlan. This is helpful if we want to set up some state before executing the
* query, e.g., `BroadcastHashJoin` uses it to broadcast asynchronously.
*
* @note `prepare` method has already walked down the tree, so the implementation doesn't have
* to call children's `prepare` methods.
*
* This will only be called once, protected by `this`.
*/
protected def doPrepare(): Unit = {}
/**
* Produces the result of the query as an `RDD[InternalRow]`
*
* Overridden by concrete implementations of SparkPlan.
*/
protected def doExecute(): RDD[InternalRow]
/**
* Produces the result of the query as a broadcast variable.
*
* Overridden by concrete implementations of SparkPlan.
*/
protected[sql] def doExecuteBroadcast[T](): broadcast.Broadcast[T] = {
throw new UnsupportedOperationException(s"$nodeName does not implement doExecuteBroadcast")
}
/**
* Packing the UnsafeRows into byte array for faster serialization.
* The byte arrays are in the following format:
* [size] [bytes of UnsafeRow] [size] [bytes of UnsafeRow] ... [-1]
*
* UnsafeRow is highly compressible (at least 8 bytes for any column), the byte array is also
* compressed.
*/
private def getByteArrayRdd(n: Int = -1): RDD[(Long, Array[Byte])] = {
execute().mapPartitionsInternal { iter =>
var count = 0
val buffer = new Array[Byte](4 << 10) // 4K
val codec = CompressionCodec.createCodec(SparkEnv.get.conf)
val bos = new ByteArrayOutputStream()
val out = new DataOutputStream(codec.compressedOutputStream(bos))
// `iter.hasNext` may produce one row and buffer it, we should only call it when the limit is
// not hit.
while ((n < 0 || count < n) && iter.hasNext) {
val row = iter.next().asInstanceOf[UnsafeRow]
out.writeInt(row.getSizeInBytes)
row.writeToStream(out, buffer)
count += 1
}
out.writeInt(-1)
out.flush()
out.close()
Iterator((count, bos.toByteArray))
}
}
/**
* Decodes the byte arrays back to UnsafeRows and put them into buffer.
*/
private def decodeUnsafeRows(bytes: Array[Byte]): Iterator[InternalRow] = {
val nFields = schema.length
val codec = CompressionCodec.createCodec(SparkEnv.get.conf)
val bis = new ByteArrayInputStream(bytes)
val ins = new DataInputStream(codec.compressedInputStream(bis))
new Iterator[InternalRow] {
private var sizeOfNextRow = ins.readInt()
override def hasNext: Boolean = sizeOfNextRow >= 0
override def next(): InternalRow = {
val bs = new Array[Byte](sizeOfNextRow)
ins.readFully(bs)
val row = new UnsafeRow(nFields)
row.pointTo(bs, sizeOfNextRow)
sizeOfNextRow = ins.readInt()
row
}
}
}
/**
* Runs this query returning the result as an array.
*/
def executeCollect(): Array[InternalRow] = {
val byteArrayRdd = getByteArrayRdd()
val results = ArrayBuffer[InternalRow]()
byteArrayRdd.collect().foreach { countAndBytes =>
decodeUnsafeRows(countAndBytes._2).foreach(results.+=)
}
results.toArray
}
private[spark] def executeCollectIterator(): (Long, Iterator[InternalRow]) = {
val countsAndBytes = getByteArrayRdd().collect()
val total = countsAndBytes.map(_._1).sum
val rows = countsAndBytes.iterator.flatMap(countAndBytes => decodeUnsafeRows(countAndBytes._2))
(total, rows)
}
/**
* Runs this query returning the result as an iterator of InternalRow.
*
* @note Triggers multiple jobs (one for each partition).
*/
def executeToIterator(): Iterator[InternalRow] = {
getByteArrayRdd().map(_._2).toLocalIterator.flatMap(decodeUnsafeRows)
}
/**
* Runs this query returning the result as an array, using external Row format.
*/
def executeCollectPublic(): Array[Row] = {
val converter = CatalystTypeConverters.createToScalaConverter(schema)
executeCollect().map(converter(_).asInstanceOf[Row])
}
/**
* Runs this query returning the first `n` rows as an array.
*
* This is modeled after `RDD.take` but never runs any job locally on the driver.
*/
def executeTake(n: Int): Array[InternalRow] = {
if (n == 0) {
return new Array[InternalRow](0)
}
val childRDD = getByteArrayRdd(n).map(_._2)
val buf = new ArrayBuffer[InternalRow]
val totalParts = childRDD.partitions.length
var partsScanned = 0
while (buf.size < n && partsScanned < totalParts) {
// The number of partitions to try in this iteration. It is ok for this number to be
// greater than totalParts because we actually cap it at totalParts in runJob.
var numPartsToTry = 1L
if (partsScanned > 0) {
// If we didn't find any rows after the previous iteration, quadruple and retry.
// Otherwise, interpolate the number of partitions we need to try, but overestimate
// it by 50%. We also cap the estimation in the end.
val limitScaleUpFactor = Math.max(sqlContext.conf.limitScaleUpFactor, 2)
if (buf.isEmpty) {
numPartsToTry = partsScanned * limitScaleUpFactor
} else {
val left = n - buf.size
// As left > 0, numPartsToTry is always >= 1
numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
numPartsToTry = Math.min(numPartsToTry, partsScanned * limitScaleUpFactor)
}
}
val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
val sc = sqlContext.sparkContext
val res = sc.runJob(childRDD,
(it: Iterator[Array[Byte]]) => if (it.hasNext) it.next() else Array.empty[Byte], p)
buf ++= res.flatMap(decodeUnsafeRows)
partsScanned += p.size
}
if (buf.size > n) {
buf.take(n).toArray
} else {
buf.toArray
}
}
protected def newMutableProjection(
expressions: Seq[Expression],
inputSchema: Seq[Attribute],
useSubexprElimination: Boolean = false): MutableProjection = {
log.debug(s"Creating MutableProj: $expressions, inputSchema: $inputSchema")
GenerateMutableProjection.generate(expressions, inputSchema, useSubexprElimination)
}
private def genInterpretedPredicate(
expression: Expression, inputSchema: Seq[Attribute]): InterpretedPredicate = {
val str = expression.toString
val logMessage = if (str.length > 256) {
str.substring(0, 256 - 3) + "..."
} else {
str
}
logWarning(s"Codegen disabled for this expression:\n $logMessage")
InterpretedPredicate.create(expression, inputSchema)
}
protected def newPredicate(
expression: Expression, inputSchema: Seq[Attribute]): GenPredicate = {
try {
GeneratePredicate.generate(expression, inputSchema)
} catch {
case _ @ (_: InternalCompilerException | _: CompileException) if codeGenFallBack =>
genInterpretedPredicate(expression, inputSchema)
}
}
protected def newOrdering(
order: Seq[SortOrder], inputSchema: Seq[Attribute]): Ordering[InternalRow] = {
GenerateOrdering.generate(order, inputSchema)
}
/**
* Creates a row ordering for the given schema, in natural ascending order.
*/
protected def newNaturalAscendingOrdering(dataTypes: Seq[DataType]): Ordering[InternalRow] = {
val order: Seq[SortOrder] = dataTypes.zipWithIndex.map {
case (dt, index) => SortOrder(BoundReference(index, dt, nullable = true), Ascending)
}
newOrdering(order, Seq.empty)
}
/**
* Cleans up the resources used by the physical operator (if any). In general, all the resources
* should be cleaned up when the task finishes but operators like SortMergeJoinExec and LimitExec
* may want eager cleanup to free up tight resources (e.g., memory).
*/
protected[sql] def cleanupResources(): Unit = {
children.foreach(_.cleanupResources())
}
}
object SparkPlan {
private[execution] val subqueryExecutionContext = ExecutionContext.fromExecutorService(
ThreadUtils.newDaemonCachedThreadPool("subquery", 16))
}
trait LeafExecNode extends SparkPlan {
override final def children: Seq[SparkPlan] = Nil
override def producedAttributes: AttributeSet = outputSet
}
object UnaryExecNode {
def unapply(a: Any): Option[(SparkPlan, SparkPlan)] = a match {
case s: SparkPlan if s.children.size == 1 => Some((s, s.children.head))
case _ => None
}
}
trait UnaryExecNode extends SparkPlan {
def child: SparkPlan
override final def children: Seq[SparkPlan] = child :: Nil
}
trait BinaryExecNode extends SparkPlan {
def left: SparkPlan
def right: SparkPlan
override final def children: Seq[SparkPlan] = Seq(left, right)
}