All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.Dataset.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import java.io.{ByteArrayOutputStream, CharArrayWriter, DataOutputStream}

import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, HashSet}
import scala.reflect.runtime.universe.TypeTag
import scala.util.control.NonFatal

import org.apache.commons.lang3.StringUtils

import org.apache.spark.TaskContext
import org.apache.spark.annotation.{DeveloperApi, Stable, Unstable}
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.api.java.function._
import org.apache.spark.api.python.{PythonRDD, SerDeUtil}
import org.apache.spark.api.r.RRDD
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.{CatalystTypeConverters, InternalRow, ScalaReflection}
import org.apache.spark.sql.catalyst.QueryPlanningTracker
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.catalog.HiveTableRelation
import org.apache.spark.sql.catalyst.encoders._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.json.{JacksonGenerator, JSONOptions}
import org.apache.spark.sql.catalyst.optimizer.CombineUnions
import org.apache.spark.sql.catalyst.parser.{ParseException, ParserUtils}
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.plans.physical.{Partitioning, PartitioningCollection}
import org.apache.spark.sql.catalyst.trees.TreeNodeTag
import org.apache.spark.sql.catalyst.util.IntervalUtils
import org.apache.spark.sql.errors.{QueryCompilationErrors, QueryExecutionErrors}
import org.apache.spark.sql.execution._
import org.apache.spark.sql.execution.aggregate.TypedAggregateExpression
import org.apache.spark.sql.execution.arrow.{ArrowBatchStreamWriter, ArrowConverters}
import org.apache.spark.sql.execution.command._
import org.apache.spark.sql.execution.datasources.LogicalRelation
import org.apache.spark.sql.execution.datasources.v2.{DataSourceV2Relation, DataSourceV2ScanRelation, FileTable}
import org.apache.spark.sql.execution.python.EvaluatePython
import org.apache.spark.sql.execution.stat.StatFunctions
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.streaming.DataStreamWriter
import org.apache.spark.sql.types._
import org.apache.spark.sql.util.SchemaUtils
import org.apache.spark.storage.StorageLevel
import org.apache.spark.unsafe.array.ByteArrayMethods
import org.apache.spark.util.Utils

private[sql] object Dataset {
  val curId = new java.util.concurrent.atomic.AtomicLong()
  val DATASET_ID_KEY = "__dataset_id"
  val COL_POS_KEY = "__col_position"
  val DATASET_ID_TAG = TreeNodeTag[HashSet[Long]]("dataset_id")

  def apply[T: Encoder](sparkSession: SparkSession, logicalPlan: LogicalPlan): Dataset[T] = {
    val dataset = new Dataset(sparkSession, logicalPlan, implicitly[Encoder[T]])
    // Eagerly bind the encoder so we verify that the encoder matches the underlying
    // schema. The user will get an error if this is not the case.
    // optimization: it is guaranteed that [[InternalRow]] can be converted to [[Row]] so
    // do not do this check in that case. this check can be expensive since it requires running
    // the whole [[Analyzer]] to resolve the deserializer
    if (dataset.exprEnc.clsTag.runtimeClass != classOf[Row]) {
      dataset.resolvedEnc
    }
    dataset
  }

  def ofRows(sparkSession: SparkSession, logicalPlan: LogicalPlan): DataFrame =
    sparkSession.withActive {
      val qe = sparkSession.sessionState.executePlan(logicalPlan)
      qe.assertAnalyzed()
      new Dataset[Row](qe, RowEncoder(qe.analyzed.schema))
  }

  /** A variant of ofRows that allows passing in a tracker so we can track query parsing time. */
  def ofRows(sparkSession: SparkSession, logicalPlan: LogicalPlan, tracker: QueryPlanningTracker)
    : DataFrame = sparkSession.withActive {
    val qe = new QueryExecution(sparkSession, logicalPlan, tracker)
    qe.assertAnalyzed()
    new Dataset[Row](qe, RowEncoder(qe.analyzed.schema))
  }
}

/**
 * A Dataset is a strongly typed collection of domain-specific objects that can be transformed
 * in parallel using functional or relational operations. Each Dataset also has an untyped view
 * called a `DataFrame`, which is a Dataset of [[Row]].
 *
 * Operations available on Datasets are divided into transformations and actions. Transformations
 * are the ones that produce new Datasets, and actions are the ones that trigger computation and
 * return results. Example transformations include map, filter, select, and aggregate (`groupBy`).
 * Example actions count, show, or writing data out to file systems.
 *
 * Datasets are "lazy", i.e. computations are only triggered when an action is invoked. Internally,
 * a Dataset represents a logical plan that describes the computation required to produce the data.
 * When an action is invoked, Spark's query optimizer optimizes the logical plan and generates a
 * physical plan for efficient execution in a parallel and distributed manner. To explore the
 * logical plan as well as optimized physical plan, use the `explain` function.
 *
 * To efficiently support domain-specific objects, an [[Encoder]] is required. The encoder maps
 * the domain specific type `T` to Spark's internal type system. For example, given a class `Person`
 * with two fields, `name` (string) and `age` (int), an encoder is used to tell Spark to generate
 * code at runtime to serialize the `Person` object into a binary structure. This binary structure
 * often has much lower memory footprint as well as are optimized for efficiency in data processing
 * (e.g. in a columnar format). To understand the internal binary representation for data, use the
 * `schema` function.
 *
 * There are typically two ways to create a Dataset. The most common way is by pointing Spark
 * to some files on storage systems, using the `read` function available on a `SparkSession`.
 * {{{
 *   val people = spark.read.parquet("...").as[Person]  // Scala
 *   Dataset people = spark.read().parquet("...").as(Encoders.bean(Person.class)); // Java
 * }}}
 *
 * Datasets can also be created through transformations available on existing Datasets. For example,
 * the following creates a new Dataset by applying a filter on the existing one:
 * {{{
 *   val names = people.map(_.name)  // in Scala; names is a Dataset[String]
 *   Dataset names = people.map((Person p) -> p.name, Encoders.STRING));
 * }}}
 *
 * Dataset operations can also be untyped, through various domain-specific-language (DSL)
 * functions defined in: Dataset (this class), [[Column]], and [[functions]]. These operations
 * are very similar to the operations available in the data frame abstraction in R or Python.
 *
 * To select a column from the Dataset, use `apply` method in Scala and `col` in Java.
 * {{{
 *   val ageCol = people("age")  // in Scala
 *   Column ageCol = people.col("age"); // in Java
 * }}}
 *
 * Note that the [[Column]] type can also be manipulated through its various functions.
 * {{{
 *   // The following creates a new column that increases everybody's age by 10.
 *   people("age") + 10  // in Scala
 *   people.col("age").plus(10);  // in Java
 * }}}
 *
 * A more concrete example in Scala:
 * {{{
 *   // To create Dataset[Row] using SparkSession
 *   val people = spark.read.parquet("...")
 *   val department = spark.read.parquet("...")
 *
 *   people.filter("age > 30")
 *     .join(department, people("deptId") === department("id"))
 *     .groupBy(department("name"), people("gender"))
 *     .agg(avg(people("salary")), max(people("age")))
 * }}}
 *
 * and in Java:
 * {{{
 *   // To create Dataset using SparkSession
 *   Dataset people = spark.read().parquet("...");
 *   Dataset department = spark.read().parquet("...");
 *
 *   people.filter(people.col("age").gt(30))
 *     .join(department, people.col("deptId").equalTo(department.col("id")))
 *     .groupBy(department.col("name"), people.col("gender"))
 *     .agg(avg(people.col("salary")), max(people.col("age")));
 * }}}
 *
 * @groupname basic Basic Dataset functions
 * @groupname action Actions
 * @groupname untypedrel Untyped transformations
 * @groupname typedrel Typed transformations
 *
 * @since 1.6.0
 */
@Stable
class Dataset[T] private[sql](
    @DeveloperApi @Unstable @transient val queryExecution: QueryExecution,
    @DeveloperApi @Unstable @transient val encoder: Encoder[T])
  extends Serializable {

  @transient lazy val sparkSession: SparkSession = {
    if (queryExecution == null || queryExecution.sparkSession == null) {
      throw QueryExecutionErrors.transformationsAndActionsNotInvokedByDriverError()
    }
    queryExecution.sparkSession
  }

  // A globally unique id of this Dataset.
  private val id = Dataset.curId.getAndIncrement()

  queryExecution.assertAnalyzed()

  // Note for Spark contributors: if adding or updating any action in `Dataset`, please make sure
  // you wrap it with `withNewExecutionId` if this actions doesn't call other action.

  def this(sparkSession: SparkSession, logicalPlan: LogicalPlan, encoder: Encoder[T]) = {
    this(sparkSession.sessionState.executePlan(logicalPlan), encoder)
  }

  def this(sqlContext: SQLContext, logicalPlan: LogicalPlan, encoder: Encoder[T]) = {
    this(sqlContext.sparkSession, logicalPlan, encoder)
  }

  @transient private[sql] val logicalPlan: LogicalPlan = {
    val plan = queryExecution.commandExecuted
    if (sparkSession.sessionState.conf.getConf(SQLConf.FAIL_AMBIGUOUS_SELF_JOIN_ENABLED)) {
      val dsIds = plan.getTagValue(Dataset.DATASET_ID_TAG).getOrElse(new HashSet[Long])
      dsIds.add(id)
      plan.setTagValue(Dataset.DATASET_ID_TAG, dsIds)
    }
    plan
  }

  /**
   * Currently [[ExpressionEncoder]] is the only implementation of [[Encoder]], here we turn the
   * passed in encoder to [[ExpressionEncoder]] explicitly, and mark it implicit so that we can use
   * it when constructing new Dataset objects that have the same object type (that will be
   * possibly resolved to a different schema).
   */
  private[sql] implicit val exprEnc: ExpressionEncoder[T] = encoderFor(encoder)

  // The resolved `ExpressionEncoder` which can be used to turn rows to objects of type T, after
  // collecting rows to the driver side.
  private lazy val resolvedEnc = {
    exprEnc.resolveAndBind(logicalPlan.output, sparkSession.sessionState.analyzer)
  }

  private implicit def classTag = exprEnc.clsTag

  // sqlContext must be val because a stable identifier is expected when you import implicits
  @transient lazy val sqlContext: SQLContext = sparkSession.sqlContext

  private[sql] def resolve(colName: String): NamedExpression = {
    val resolver = sparkSession.sessionState.analyzer.resolver
    queryExecution.analyzed.resolveQuoted(colName, resolver)
      .getOrElse(throw resolveException(colName, schema.fieldNames))
  }

  private def resolveException(colName: String, fields: Array[String]): AnalysisException = {
    val extraMsg = if (fields.exists(sparkSession.sessionState.analyzer.resolver(_, colName))) {
      s"; did you mean to quote the `$colName` column?"
    } else ""
    val fieldsStr = fields.mkString(", ")
    QueryCompilationErrors.cannotResolveColumnNameAmongFieldsError(colName, fieldsStr, extraMsg)
  }

  private[sql] def numericColumns: Seq[Expression] = {
    schema.fields.filter(_.dataType.isInstanceOf[NumericType]).map { n =>
      queryExecution.analyzed.resolveQuoted(n.name, sparkSession.sessionState.analyzer.resolver).get
    }
  }

  /**
   * Get rows represented in Sequence by specific truncate and vertical requirement.
   *
   * @param numRows Number of rows to return
   * @param truncate If set to more than 0, truncates strings to `truncate` characters and
   *                   all cells will be aligned right.
   */
  private[sql] def getRows(
      numRows: Int,
      truncate: Int): Seq[Seq[String]] = {
    val newDf = toDF()
    val castCols = newDf.logicalPlan.output.map { col =>
      // Since binary types in top-level schema fields have a specific format to print,
      // so we do not cast them to strings here.
      if (col.dataType == BinaryType) {
        Column(col)
      } else {
        Column(col).cast(StringType)
      }
    }
    val data = newDf.select(castCols: _*).take(numRows + 1)

    // For array values, replace Seq and Array with square brackets
    // For cells that are beyond `truncate` characters, replace it with the
    // first `truncate-3` and "..."
    schema.fieldNames.map(SchemaUtils.escapeMetaCharacters).toSeq +: data.map { row =>
      row.toSeq.map { cell =>
        val str = cell match {
          case null => "null"
          case binary: Array[Byte] => binary.map("%02X".format(_)).mkString("[", " ", "]")
          case _ =>
            // Escapes meta-characters not to break the `showString` format
            SchemaUtils.escapeMetaCharacters(cell.toString)
        }
        if (truncate > 0 && str.length > truncate) {
          // do not show ellipses for strings shorter than 4 characters.
          if (truncate < 4) str.substring(0, truncate)
          else str.substring(0, truncate - 3) + "..."
        } else {
          str
        }
      }: Seq[String]
    }
  }

  /**
   * Compose the string representing rows for output
   *
   * @param _numRows Number of rows to show
   * @param truncate If set to more than 0, truncates strings to `truncate` characters and
   *                   all cells will be aligned right.
   * @param vertical If set to true, prints output rows vertically (one line per column value).
   */
  private[sql] def showString(
      _numRows: Int,
      truncate: Int = 20,
      vertical: Boolean = false): String = {
    val numRows = _numRows.max(0).min(ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH - 1)
    // Get rows represented by Seq[Seq[String]], we may get one more line if it has more data.
    val tmpRows = getRows(numRows, truncate)

    val hasMoreData = tmpRows.length - 1 > numRows
    val rows = tmpRows.take(numRows + 1)

    val sb = new StringBuilder
    val numCols = schema.fieldNames.length
    // We set a minimum column width at '3'
    val minimumColWidth = 3

    if (!vertical) {
      // Initialise the width of each column to a minimum value
      val colWidths = Array.fill(numCols)(minimumColWidth)

      // Compute the width of each column
      for (row <- rows) {
        for ((cell, i) <- row.zipWithIndex) {
          colWidths(i) = math.max(colWidths(i), Utils.stringHalfWidth(cell))
        }
      }

      val paddedRows = rows.map { row =>
        row.zipWithIndex.map { case (cell, i) =>
          if (truncate > 0) {
            StringUtils.leftPad(cell, colWidths(i) - Utils.stringHalfWidth(cell) + cell.length)
          } else {
            StringUtils.rightPad(cell, colWidths(i) - Utils.stringHalfWidth(cell) + cell.length)
          }
        }
      }

      // Create SeparateLine
      val sep: String = colWidths.map("-" * _).addString(sb, "+", "+", "+\n").toString()

      // column names
      paddedRows.head.addString(sb, "|", "|", "|\n")
      sb.append(sep)

      // data
      paddedRows.tail.foreach(_.addString(sb, "|", "|", "|\n"))
      sb.append(sep)
    } else {
      // Extended display mode enabled
      val fieldNames = rows.head
      val dataRows = rows.tail

      // Compute the width of field name and data columns
      val fieldNameColWidth = fieldNames.foldLeft(minimumColWidth) { case (curMax, fieldName) =>
        math.max(curMax, Utils.stringHalfWidth(fieldName))
      }
      val dataColWidth = dataRows.foldLeft(minimumColWidth) { case (curMax, row) =>
        math.max(curMax, row.map(cell => Utils.stringHalfWidth(cell)).max)
      }

      dataRows.zipWithIndex.foreach { case (row, i) =>
        // "+ 5" in size means a character length except for padded names and data
        val rowHeader = StringUtils.rightPad(
          s"-RECORD $i", fieldNameColWidth + dataColWidth + 5, "-")
        sb.append(rowHeader).append("\n")
        row.zipWithIndex.map { case (cell, j) =>
          val fieldName = StringUtils.rightPad(fieldNames(j),
            fieldNameColWidth - Utils.stringHalfWidth(fieldNames(j)) + fieldNames(j).length)
          val data = StringUtils.rightPad(cell,
            dataColWidth - Utils.stringHalfWidth(cell) + cell.length)
          s" $fieldName | $data "
        }.addString(sb, "", "\n", "\n")
      }
    }

    // Print a footer
    if (vertical && rows.tail.isEmpty) {
      // In a vertical mode, print an empty row set explicitly
      sb.append("(0 rows)\n")
    } else if (hasMoreData) {
      // For Data that has more than "numRows" records
      val rowsString = if (numRows == 1) "row" else "rows"
      sb.append(s"only showing top $numRows $rowsString\n")
    }

    sb.toString()
  }

  override def toString: String = {
    try {
      val builder = new StringBuilder
      val fields = schema.take(2).map {
        case f => s"${f.name}: ${f.dataType.simpleString(2)}"
      }
      builder.append("[")
      builder.append(fields.mkString(", "))
      if (schema.length > 2) {
        if (schema.length - fields.size == 1) {
          builder.append(" ... 1 more field")
        } else {
          builder.append(" ... " + (schema.length - 2) + " more fields")
        }
      }
      builder.append("]").toString()
    } catch {
      case NonFatal(e) =>
        s"Invalid tree; ${e.getMessage}:\n$queryExecution"
    }
  }

  /**
   * Converts this strongly typed collection of data to generic Dataframe. In contrast to the
   * strongly typed objects that Dataset operations work on, a Dataframe returns generic [[Row]]
   * objects that allow fields to be accessed by ordinal or name.
   *
   * @group basic
   * @since 1.6.0
   */
  // This is declared with parentheses to prevent the Scala compiler from treating
  // `ds.toDF("1")` as invoking this toDF and then apply on the returned DataFrame.
  def toDF(): DataFrame = new Dataset[Row](queryExecution, RowEncoder(schema))

  /**
   * Returns a new Dataset where each record has been mapped on to the specified type. The
   * method used to map columns depend on the type of `U`:
   * 
    *
  • When `U` is a class, fields for the class will be mapped to columns of the same name * (case sensitivity is determined by `spark.sql.caseSensitive`).
  • *
  • When `U` is a tuple, the columns will be mapped by ordinal (i.e. the first column will * be assigned to `_1`).
  • *
  • When `U` is a primitive type (i.e. String, Int, etc), then the first column of the * `DataFrame` will be used.
  • *
* * If the schema of the Dataset does not match the desired `U` type, you can use `select` * along with `alias` or `as` to rearrange or rename as required. * * Note that `as[]` only changes the view of the data that is passed into typed operations, * such as `map()`, and does not eagerly project away any columns that are not present in * the specified class. * * @group basic * @since 1.6.0 */ def as[U : Encoder]: Dataset[U] = Dataset[U](sparkSession, logicalPlan) /** * Converts this strongly typed collection of data to generic `DataFrame` with columns renamed. * This can be quite convenient in conversion from an RDD of tuples into a `DataFrame` with * meaningful names. For example: * {{{ * val rdd: RDD[(Int, String)] = ... * rdd.toDF() // this implicit conversion creates a DataFrame with column name `_1` and `_2` * rdd.toDF("id", "name") // this creates a DataFrame with column name "id" and "name" * }}} * * @group basic * @since 2.0.0 */ @scala.annotation.varargs def toDF(colNames: String*): DataFrame = { require(schema.size == colNames.size, "The number of columns doesn't match.\n" + s"Old column names (${schema.size}): " + schema.fields.map(_.name).mkString(", ") + "\n" + s"New column names (${colNames.size}): " + colNames.mkString(", ")) val newCols = logicalPlan.output.zip(colNames).map { case (oldAttribute, newName) => Column(oldAttribute).as(newName) } select(newCols : _*) } /** * Returns the schema of this Dataset. * * @group basic * @since 1.6.0 */ def schema: StructType = sparkSession.withActive { queryExecution.analyzed.schema } /** * Prints the schema to the console in a nice tree format. * * @group basic * @since 1.6.0 */ def printSchema(): Unit = printSchema(Int.MaxValue) // scalastyle:off println /** * Prints the schema up to the given level to the console in a nice tree format. * * @group basic * @since 3.0.0 */ def printSchema(level: Int): Unit = println(schema.treeString(level)) // scalastyle:on println /** * Prints the plans (logical and physical) with a format specified by a given explain mode. * * @param mode specifies the expected output format of plans. *
    *
  • `simple` Print only a physical plan.
  • *
  • `extended`: Print both logical and physical plans.
  • *
  • `codegen`: Print a physical plan and generated codes if they are * available.
  • *
  • `cost`: Print a logical plan and statistics if they are available.
  • *
  • `formatted`: Split explain output into two sections: a physical plan outline * and node details.
  • *
* @group basic * @since 3.0.0 */ def explain(mode: String): Unit = sparkSession.withActive { // Because temporary views are resolved during analysis when we create a Dataset, and // `ExplainCommand` analyzes input query plan and resolves temporary views again. Using // `ExplainCommand` here will probably output different query plans, compared to the results // of evaluation of the Dataset. So just output QueryExecution's query plans here. // scalastyle:off println println(queryExecution.explainString(ExplainMode.fromString(mode))) // scalastyle:on println } /** * Prints the plans (logical and physical) to the console for debugging purposes. * * @param extended default `false`. If `false`, prints only the physical plan. * * @group basic * @since 1.6.0 */ def explain(extended: Boolean): Unit = if (extended) { explain(ExtendedMode.name) } else { explain(SimpleMode.name) } /** * Prints the physical plan to the console for debugging purposes. * * @group basic * @since 1.6.0 */ def explain(): Unit = explain(SimpleMode.name) /** * Returns all column names and their data types as an array. * * @group basic * @since 1.6.0 */ def dtypes: Array[(String, String)] = schema.fields.map { field => (field.name, field.dataType.toString) } /** * Returns all column names as an array. * * @group basic * @since 1.6.0 */ def columns: Array[String] = schema.fields.map(_.name) /** * Returns true if the `collect` and `take` methods can be run locally * (without any Spark executors). * * @group basic * @since 1.6.0 */ def isLocal: Boolean = logicalPlan.isInstanceOf[LocalRelation] || logicalPlan.isInstanceOf[CommandResult] /** * Returns true if the `Dataset` is empty. * * @group basic * @since 2.4.0 */ def isEmpty: Boolean = withAction("isEmpty", select().queryExecution) { plan => plan.executeTake(1).isEmpty } /** * Returns true if this Dataset contains one or more sources that continuously * return data as it arrives. A Dataset that reads data from a streaming source * must be executed as a `StreamingQuery` using the `start()` method in * `DataStreamWriter`. Methods that return a single answer, e.g. `count()` or * `collect()`, will throw an [[AnalysisException]] when there is a streaming * source present. * * @group streaming * @since 2.0.0 */ def isStreaming: Boolean = logicalPlan.isStreaming /** * Eagerly checkpoint a Dataset and return the new Dataset. Checkpointing can be used to truncate * the logical plan of this Dataset, which is especially useful in iterative algorithms where the * plan may grow exponentially. It will be saved to files inside the checkpoint * directory set with `SparkContext#setCheckpointDir`. * * @group basic * @since 2.1.0 */ def checkpoint(): Dataset[T] = checkpoint(eager = true, reliableCheckpoint = true) /** * Returns a checkpointed version of this Dataset. Checkpointing can be used to truncate the * logical plan of this Dataset, which is especially useful in iterative algorithms where the * plan may grow exponentially. It will be saved to files inside the checkpoint * directory set with `SparkContext#setCheckpointDir`. * * @group basic * @since 2.1.0 */ def checkpoint(eager: Boolean): Dataset[T] = checkpoint(eager = eager, reliableCheckpoint = true) /** * Eagerly locally checkpoints a Dataset and return the new Dataset. Checkpointing can be * used to truncate the logical plan of this Dataset, which is especially useful in iterative * algorithms where the plan may grow exponentially. Local checkpoints are written to executor * storage and despite potentially faster they are unreliable and may compromise job completion. * * @group basic * @since 2.3.0 */ def localCheckpoint(): Dataset[T] = checkpoint(eager = true, reliableCheckpoint = false) /** * Locally checkpoints a Dataset and return the new Dataset. Checkpointing can be used to truncate * the logical plan of this Dataset, which is especially useful in iterative algorithms where the * plan may grow exponentially. Local checkpoints are written to executor storage and despite * potentially faster they are unreliable and may compromise job completion. * * @group basic * @since 2.3.0 */ def localCheckpoint(eager: Boolean): Dataset[T] = checkpoint( eager = eager, reliableCheckpoint = false ) /** * Returns a checkpointed version of this Dataset. * * @param eager Whether to checkpoint this dataframe immediately * @param reliableCheckpoint Whether to create a reliable checkpoint saved to files inside the * checkpoint directory. If false creates a local checkpoint using * the caching subsystem */ private def checkpoint(eager: Boolean, reliableCheckpoint: Boolean): Dataset[T] = { val actionName = if (reliableCheckpoint) "checkpoint" else "localCheckpoint" withAction(actionName, queryExecution) { physicalPlan => val internalRdd = physicalPlan.execute().map(_.copy()) if (reliableCheckpoint) { internalRdd.checkpoint() } else { internalRdd.localCheckpoint() } if (eager) { internalRdd.count() } // Takes the first leaf partitioning whenever we see a `PartitioningCollection`. Otherwise the // size of `PartitioningCollection` may grow exponentially for queries involving deep inner // joins. def firstLeafPartitioning(partitioning: Partitioning): Partitioning = { partitioning match { case p: PartitioningCollection => firstLeafPartitioning(p.partitionings.head) case p => p } } val outputPartitioning = firstLeafPartitioning(physicalPlan.outputPartitioning) Dataset.ofRows( sparkSession, LogicalRDD( logicalPlan.output, internalRdd, outputPartitioning, physicalPlan.outputOrdering, isStreaming )(sparkSession)).as[T] } } /** * Defines an event time watermark for this [[Dataset]]. A watermark tracks a point in time * before which we assume no more late data is going to arrive. * * Spark will use this watermark for several purposes: *
    *
  • To know when a given time window aggregation can be finalized and thus can be emitted * when using output modes that do not allow updates.
  • *
  • To minimize the amount of state that we need to keep for on-going aggregations, * `mapGroupsWithState` and `dropDuplicates` operators.
  • *
* The current watermark is computed by looking at the `MAX(eventTime)` seen across * all of the partitions in the query minus a user specified `delayThreshold`. Due to the cost * of coordinating this value across partitions, the actual watermark used is only guaranteed * to be at least `delayThreshold` behind the actual event time. In some cases we may still * process records that arrive more than `delayThreshold` late. * * @param eventTime the name of the column that contains the event time of the row. * @param delayThreshold the minimum delay to wait to data to arrive late, relative to the latest * record that has been processed in the form of an interval * (e.g. "1 minute" or "5 hours"). NOTE: This should not be negative. * * @group streaming * @since 2.1.0 */ // We only accept an existing column name, not a derived column here as a watermark that is // defined on a derived column cannot referenced elsewhere in the plan. def withWatermark(eventTime: String, delayThreshold: String): Dataset[T] = withTypedPlan { val parsedDelay = IntervalUtils.fromIntervalString(delayThreshold) require(!IntervalUtils.isNegative(parsedDelay), s"delay threshold ($delayThreshold) should not be negative.") EliminateEventTimeWatermark( EventTimeWatermark(UnresolvedAttribute(eventTime), parsedDelay, logicalPlan)) } /** * Displays the Dataset in a tabular form. Strings more than 20 characters will be truncated, * and all cells will be aligned right. For example: * {{{ * year month AVG('Adj Close) MAX('Adj Close) * 1980 12 0.503218 0.595103 * 1981 01 0.523289 0.570307 * 1982 02 0.436504 0.475256 * 1983 03 0.410516 0.442194 * 1984 04 0.450090 0.483521 * }}} * * @param numRows Number of rows to show * * @group action * @since 1.6.0 */ def show(numRows: Int): Unit = show(numRows, truncate = true) /** * Displays the top 20 rows of Dataset in a tabular form. Strings more than 20 characters * will be truncated, and all cells will be aligned right. * * @group action * @since 1.6.0 */ def show(): Unit = show(20) /** * Displays the top 20 rows of Dataset in a tabular form. * * @param truncate Whether truncate long strings. If true, strings more than 20 characters will * be truncated and all cells will be aligned right * * @group action * @since 1.6.0 */ def show(truncate: Boolean): Unit = show(20, truncate) /** * Displays the Dataset in a tabular form. For example: * {{{ * year month AVG('Adj Close) MAX('Adj Close) * 1980 12 0.503218 0.595103 * 1981 01 0.523289 0.570307 * 1982 02 0.436504 0.475256 * 1983 03 0.410516 0.442194 * 1984 04 0.450090 0.483521 * }}} * @param numRows Number of rows to show * @param truncate Whether truncate long strings. If true, strings more than 20 characters will * be truncated and all cells will be aligned right * * @group action * @since 1.6.0 */ // scalastyle:off println def show(numRows: Int, truncate: Boolean): Unit = if (truncate) { println(showString(numRows, truncate = 20)) } else { println(showString(numRows, truncate = 0)) } /** * Displays the Dataset in a tabular form. For example: * {{{ * year month AVG('Adj Close) MAX('Adj Close) * 1980 12 0.503218 0.595103 * 1981 01 0.523289 0.570307 * 1982 02 0.436504 0.475256 * 1983 03 0.410516 0.442194 * 1984 04 0.450090 0.483521 * }}} * * @param numRows Number of rows to show * @param truncate If set to more than 0, truncates strings to `truncate` characters and * all cells will be aligned right. * @group action * @since 1.6.0 */ def show(numRows: Int, truncate: Int): Unit = show(numRows, truncate, vertical = false) /** * Displays the Dataset in a tabular form. For example: * {{{ * year month AVG('Adj Close) MAX('Adj Close) * 1980 12 0.503218 0.595103 * 1981 01 0.523289 0.570307 * 1982 02 0.436504 0.475256 * 1983 03 0.410516 0.442194 * 1984 04 0.450090 0.483521 * }}} * * If `vertical` enabled, this command prints output rows vertically (one line per column value)? * * {{{ * -RECORD 0------------------- * year | 1980 * month | 12 * AVG('Adj Close) | 0.503218 * AVG('Adj Close) | 0.595103 * -RECORD 1------------------- * year | 1981 * month | 01 * AVG('Adj Close) | 0.523289 * AVG('Adj Close) | 0.570307 * -RECORD 2------------------- * year | 1982 * month | 02 * AVG('Adj Close) | 0.436504 * AVG('Adj Close) | 0.475256 * -RECORD 3------------------- * year | 1983 * month | 03 * AVG('Adj Close) | 0.410516 * AVG('Adj Close) | 0.442194 * -RECORD 4------------------- * year | 1984 * month | 04 * AVG('Adj Close) | 0.450090 * AVG('Adj Close) | 0.483521 * }}} * * @param numRows Number of rows to show * @param truncate If set to more than 0, truncates strings to `truncate` characters and * all cells will be aligned right. * @param vertical If set to true, prints output rows vertically (one line per column value). * @group action * @since 2.3.0 */ // scalastyle:off println def show(numRows: Int, truncate: Int, vertical: Boolean): Unit = println(showString(numRows, truncate, vertical)) // scalastyle:on println /** * Returns a [[DataFrameNaFunctions]] for working with missing data. * {{{ * // Dropping rows containing any null values. * ds.na.drop() * }}} * * @group untypedrel * @since 1.6.0 */ def na: DataFrameNaFunctions = new DataFrameNaFunctions(toDF()) /** * Returns a [[DataFrameStatFunctions]] for working statistic functions support. * {{{ * // Finding frequent items in column with name 'a'. * ds.stat.freqItems(Seq("a")) * }}} * * @group untypedrel * @since 1.6.0 */ def stat: DataFrameStatFunctions = new DataFrameStatFunctions(toDF()) /** * Join with another `DataFrame`. * * Behaves as an INNER JOIN and requires a subsequent join predicate. * * @param right Right side of the join operation. * * @group untypedrel * @since 2.0.0 */ def join(right: Dataset[_]): DataFrame = withPlan { Join(logicalPlan, right.logicalPlan, joinType = Inner, None, JoinHint.NONE) } /** * Inner equi-join with another `DataFrame` using the given column. * * Different from other join functions, the join column will only appear once in the output, * i.e. similar to SQL's `JOIN USING` syntax. * * {{{ * // Joining df1 and df2 using the column "user_id" * df1.join(df2, "user_id") * }}} * * @param right Right side of the join operation. * @param usingColumn Name of the column to join on. This column must exist on both sides. * * @note If you perform a self-join using this function without aliasing the input * `DataFrame`s, you will NOT be able to reference any columns after the join, since * there is no way to disambiguate which side of the join you would like to reference. * * @group untypedrel * @since 2.0.0 */ def join(right: Dataset[_], usingColumn: String): DataFrame = { join(right, Seq(usingColumn)) } /** * Inner equi-join with another `DataFrame` using the given columns. * * Different from other join functions, the join columns will only appear once in the output, * i.e. similar to SQL's `JOIN USING` syntax. * * {{{ * // Joining df1 and df2 using the columns "user_id" and "user_name" * df1.join(df2, Seq("user_id", "user_name")) * }}} * * @param right Right side of the join operation. * @param usingColumns Names of the columns to join on. This columns must exist on both sides. * * @note If you perform a self-join using this function without aliasing the input * `DataFrame`s, you will NOT be able to reference any columns after the join, since * there is no way to disambiguate which side of the join you would like to reference. * * @group untypedrel * @since 2.0.0 */ def join(right: Dataset[_], usingColumns: Seq[String]): DataFrame = { join(right, usingColumns, "inner") } /** * Equi-join with another `DataFrame` using the given columns. A cross join with a predicate * is specified as an inner join. If you would explicitly like to perform a cross join use the * `crossJoin` method. * * Different from other join functions, the join columns will only appear once in the output, * i.e. similar to SQL's `JOIN USING` syntax. * * @param right Right side of the join operation. * @param usingColumns Names of the columns to join on. This columns must exist on both sides. * @param joinType Type of join to perform. Default `inner`. Must be one of: * `inner`, `cross`, `outer`, `full`, `fullouter`, `full_outer`, `left`, * `leftouter`, `left_outer`, `right`, `rightouter`, `right_outer`, * `semi`, `leftsemi`, `left_semi`, `anti`, `leftanti`, left_anti`. * * @note If you perform a self-join using this function without aliasing the input * `DataFrame`s, you will NOT be able to reference any columns after the join, since * there is no way to disambiguate which side of the join you would like to reference. * * @group untypedrel * @since 2.0.0 */ def join(right: Dataset[_], usingColumns: Seq[String], joinType: String): DataFrame = { // Analyze the self join. The assumption is that the analyzer will disambiguate left vs right // by creating a new instance for one of the branch. val joined = sparkSession.sessionState.executePlan( Join(logicalPlan, right.logicalPlan, joinType = JoinType(joinType), None, JoinHint.NONE)) .analyzed.asInstanceOf[Join] withPlan { Join( joined.left, joined.right, UsingJoin(JoinType(joinType), usingColumns), None, JoinHint.NONE) } } /** * Inner join with another `DataFrame`, using the given join expression. * * {{{ * // The following two are equivalent: * df1.join(df2, $"df1Key" === $"df2Key") * df1.join(df2).where($"df1Key" === $"df2Key") * }}} * * @group untypedrel * @since 2.0.0 */ def join(right: Dataset[_], joinExprs: Column): DataFrame = join(right, joinExprs, "inner") /** * find the trivially true predicates and automatically resolves them to both sides. */ private def resolveSelfJoinCondition(plan: Join): Join = { val resolver = sparkSession.sessionState.analyzer.resolver val cond = plan.condition.map { _.transform { case catalyst.expressions.EqualTo(a: AttributeReference, b: AttributeReference) if a.sameRef(b) => catalyst.expressions.EqualTo( plan.left.resolveQuoted(a.name, resolver) .getOrElse(throw resolveException(a.name, plan.left.schema.fieldNames)), plan.right.resolveQuoted(b.name, resolver) .getOrElse(throw resolveException(b.name, plan.right.schema.fieldNames))) case catalyst.expressions.EqualNullSafe(a: AttributeReference, b: AttributeReference) if a.sameRef(b) => catalyst.expressions.EqualNullSafe( plan.left.resolveQuoted(a.name, resolver) .getOrElse(throw resolveException(a.name, plan.left.schema.fieldNames)), plan.right.resolveQuoted(b.name, resolver) .getOrElse(throw resolveException(b.name, plan.right.schema.fieldNames))) }} plan.copy(condition = cond) } /** * Join with another `DataFrame`, using the given join expression. The following performs * a full outer join between `df1` and `df2`. * * {{{ * // Scala: * import org.apache.spark.sql.functions._ * df1.join(df2, $"df1Key" === $"df2Key", "outer") * * // Java: * import static org.apache.spark.sql.functions.*; * df1.join(df2, col("df1Key").equalTo(col("df2Key")), "outer"); * }}} * * @param right Right side of the join. * @param joinExprs Join expression. * @param joinType Type of join to perform. Default `inner`. Must be one of: * `inner`, `cross`, `outer`, `full`, `fullouter`, `full_outer`, `left`, * `leftouter`, `left_outer`, `right`, `rightouter`, `right_outer`, * `semi`, `leftsemi`, `left_semi`, `anti`, `leftanti`, left_anti`. * * @group untypedrel * @since 2.0.0 */ def join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame = { // Note that in this function, we introduce a hack in the case of self-join to automatically // resolve ambiguous join conditions into ones that might make sense [SPARK-6231]. // Consider this case: df.join(df, df("key") === df("key")) // Since df("key") === df("key") is a trivially true condition, this actually becomes a // cartesian join. However, most likely users expect to perform a self join using "key". // With that assumption, this hack turns the trivially true condition into equality on join // keys that are resolved to both sides. // Trigger analysis so in the case of self-join, the analyzer will clone the plan. // After the cloning, left and right side will have distinct expression ids. val plan = withPlan( Join(logicalPlan, right.logicalPlan, JoinType(joinType), Some(joinExprs.expr), JoinHint.NONE)) .queryExecution.analyzed.asInstanceOf[Join] // If auto self join alias is disabled, return the plan. if (!sparkSession.sessionState.conf.dataFrameSelfJoinAutoResolveAmbiguity) { return withPlan(plan) } // If left/right have no output set intersection, return the plan. val lanalyzed = this.queryExecution.analyzed val ranalyzed = right.queryExecution.analyzed if (lanalyzed.outputSet.intersect(ranalyzed.outputSet).isEmpty) { return withPlan(plan) } // Otherwise, find the trivially true predicates and automatically resolves them to both sides. // By the time we get here, since we have already run analysis, all attributes should've been // resolved and become AttributeReference. withPlan { resolveSelfJoinCondition(plan) } } /** * Explicit cartesian join with another `DataFrame`. * * @param right Right side of the join operation. * * @note Cartesian joins are very expensive without an extra filter that can be pushed down. * * @group untypedrel * @since 2.1.0 */ def crossJoin(right: Dataset[_]): DataFrame = withPlan { Join(logicalPlan, right.logicalPlan, joinType = Cross, None, JoinHint.NONE) } /** * Joins this Dataset returning a `Tuple2` for each pair where `condition` evaluates to * true. * * This is similar to the relation `join` function with one important difference in the * result schema. Since `joinWith` preserves objects present on either side of the join, the * result schema is similarly nested into a tuple under the column names `_1` and `_2`. * * This type of join can be useful both for preserving type-safety with the original object * types as well as working with relational data where either side of the join has column * names in common. * * @param other Right side of the join. * @param condition Join expression. * @param joinType Type of join to perform. Default `inner`. Must be one of: * `inner`, `cross`, `outer`, `full`, `fullouter`,`full_outer`, `left`, * `leftouter`, `left_outer`, `right`, `rightouter`, `right_outer`. * * @group typedrel * @since 1.6.0 */ def joinWith[U](other: Dataset[U], condition: Column, joinType: String): Dataset[(T, U)] = { // Creates a Join node and resolve it first, to get join condition resolved, self-join resolved, // etc. var joined = sparkSession.sessionState.executePlan( Join( this.logicalPlan, other.logicalPlan, JoinType(joinType), Some(condition.expr), JoinHint.NONE)).analyzed.asInstanceOf[Join] if (joined.joinType == LeftSemi || joined.joinType == LeftAnti) { throw QueryCompilationErrors.invalidJoinTypeInJoinWithError(joined.joinType) } // If auto self join alias is enable if (sqlContext.conf.dataFrameSelfJoinAutoResolveAmbiguity) { joined = resolveSelfJoinCondition(joined) } implicit val tuple2Encoder: Encoder[(T, U)] = ExpressionEncoder.tuple(this.exprEnc, other.exprEnc) val leftResultExpr = { if (!this.exprEnc.isSerializedAsStructForTopLevel) { assert(joined.left.output.length == 1) Alias(joined.left.output.head, "_1")() } else { Alias(CreateStruct(joined.left.output), "_1")() } } val rightResultExpr = { if (!other.exprEnc.isSerializedAsStructForTopLevel) { assert(joined.right.output.length == 1) Alias(joined.right.output.head, "_2")() } else { Alias(CreateStruct(joined.right.output), "_2")() } } if (joined.joinType.isInstanceOf[InnerLike]) { // For inner joins, we can directly perform the join and then can project the join // results into structs. This ensures that data remains flat during shuffles / // exchanges (unlike the outer join path, which nests the data before shuffling). withTypedPlan(Project(Seq(leftResultExpr, rightResultExpr), joined)) } else { // outer joins // For both join sides, combine all outputs into a single column and alias it with "_1 // or "_2", to match the schema for the encoder of the join result. // Note that we do this before joining them, to enable the join operator to return null // for one side, in cases like outer-join. val left = Project(leftResultExpr :: Nil, joined.left) val right = Project(rightResultExpr :: Nil, joined.right) // Rewrites the join condition to make the attribute point to correct column/field, // after we combine the outputs of each join side. val conditionExpr = joined.condition.get transformUp { case a: Attribute if joined.left.outputSet.contains(a) => if (!this.exprEnc.isSerializedAsStructForTopLevel) { left.output.head } else { val index = joined.left.output.indexWhere(_.exprId == a.exprId) GetStructField(left.output.head, index) } case a: Attribute if joined.right.outputSet.contains(a) => if (!other.exprEnc.isSerializedAsStructForTopLevel) { right.output.head } else { val index = joined.right.output.indexWhere(_.exprId == a.exprId) GetStructField(right.output.head, index) } } withTypedPlan(Join(left, right, joined.joinType, Some(conditionExpr), JoinHint.NONE)) } } /** * Using inner equi-join to join this Dataset returning a `Tuple2` for each pair * where `condition` evaluates to true. * * @param other Right side of the join. * @param condition Join expression. * * @group typedrel * @since 1.6.0 */ def joinWith[U](other: Dataset[U], condition: Column): Dataset[(T, U)] = { joinWith(other, condition, "inner") } /** * Returns a new Dataset with each partition sorted by the given expressions. * * This is the same operation as "SORT BY" in SQL (Hive QL). * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def sortWithinPartitions(sortCol: String, sortCols: String*): Dataset[T] = { sortWithinPartitions((sortCol +: sortCols).map(Column(_)) : _*) } /** * Returns a new Dataset with each partition sorted by the given expressions. * * This is the same operation as "SORT BY" in SQL (Hive QL). * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def sortWithinPartitions(sortExprs: Column*): Dataset[T] = { sortInternal(global = false, sortExprs) } /** * Returns a new Dataset sorted by the specified column, all in ascending order. * {{{ * // The following 3 are equivalent * ds.sort("sortcol") * ds.sort($"sortcol") * ds.sort($"sortcol".asc) * }}} * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def sort(sortCol: String, sortCols: String*): Dataset[T] = { sort((sortCol +: sortCols).map(Column(_)) : _*) } /** * Returns a new Dataset sorted by the given expressions. For example: * {{{ * ds.sort($"col1", $"col2".desc) * }}} * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def sort(sortExprs: Column*): Dataset[T] = { sortInternal(global = true, sortExprs) } /** * Returns a new Dataset sorted by the given expressions. * This is an alias of the `sort` function. * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def orderBy(sortCol: String, sortCols: String*): Dataset[T] = sort(sortCol, sortCols : _*) /** * Returns a new Dataset sorted by the given expressions. * This is an alias of the `sort` function. * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def orderBy(sortExprs: Column*): Dataset[T] = sort(sortExprs : _*) /** * Selects column based on the column name and returns it as a [[Column]]. * * @note The column name can also reference to a nested column like `a.b`. * * @group untypedrel * @since 2.0.0 */ def apply(colName: String): Column = col(colName) /** * Specifies some hint on the current Dataset. As an example, the following code specifies * that one of the plan can be broadcasted: * * {{{ * df1.join(df2.hint("broadcast")) * }}} * * @group basic * @since 2.2.0 */ @scala.annotation.varargs def hint(name: String, parameters: Any*): Dataset[T] = withTypedPlan { UnresolvedHint(name, parameters, logicalPlan) } /** * Selects column based on the column name and returns it as a [[Column]]. * * @note The column name can also reference to a nested column like `a.b`. * * @group untypedrel * @since 2.0.0 */ def col(colName: String): Column = colName match { case "*" => Column(ResolvedStar(queryExecution.analyzed.output)) case _ => if (sqlContext.conf.supportQuotedRegexColumnName) { colRegex(colName) } else { Column(addDataFrameIdToCol(resolve(colName))) } } // Attach the dataset id and column position to the column reference, so that we can detect // ambiguous self-join correctly. See the rule `DetectAmbiguousSelfJoin`. // This must be called before we return a `Column` that contains `AttributeReference`. // Note that, the metadata added here are only available in the analyzer, as the analyzer rule // `DetectAmbiguousSelfJoin` will remove it. private def addDataFrameIdToCol(expr: NamedExpression): NamedExpression = { val newExpr = expr transform { case a: AttributeReference if sparkSession.sessionState.conf.getConf(SQLConf.FAIL_AMBIGUOUS_SELF_JOIN_ENABLED) => val metadata = new MetadataBuilder() .withMetadata(a.metadata) .putLong(Dataset.DATASET_ID_KEY, id) .putLong(Dataset.COL_POS_KEY, logicalPlan.output.indexWhere(a.semanticEquals)) .build() a.withMetadata(metadata) } newExpr.asInstanceOf[NamedExpression] } /** * Selects column based on the column name specified as a regex and returns it as [[Column]]. * @group untypedrel * @since 2.3.0 */ def colRegex(colName: String): Column = { val caseSensitive = sparkSession.sessionState.conf.caseSensitiveAnalysis colName match { case ParserUtils.escapedIdentifier(columnNameRegex) => Column(UnresolvedRegex(columnNameRegex, None, caseSensitive)) case ParserUtils.qualifiedEscapedIdentifier(nameParts, columnNameRegex) => Column(UnresolvedRegex(columnNameRegex, Some(nameParts), caseSensitive)) case _ => Column(addDataFrameIdToCol(resolve(colName))) } } /** * Returns a new Dataset with an alias set. * * @group typedrel * @since 1.6.0 */ def as(alias: String): Dataset[T] = withTypedPlan { SubqueryAlias(alias, logicalPlan) } /** * (Scala-specific) Returns a new Dataset with an alias set. * * @group typedrel * @since 2.0.0 */ def as(alias: Symbol): Dataset[T] = as(alias.name) /** * Returns a new Dataset with an alias set. Same as `as`. * * @group typedrel * @since 2.0.0 */ def alias(alias: String): Dataset[T] = as(alias) /** * (Scala-specific) Returns a new Dataset with an alias set. Same as `as`. * * @group typedrel * @since 2.0.0 */ def alias(alias: Symbol): Dataset[T] = as(alias) /** * Selects a set of column based expressions. * {{{ * ds.select($"colA", $"colB" + 1) * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def select(cols: Column*): DataFrame = withPlan { val untypedCols = cols.map { case typedCol: TypedColumn[_, _] => // Checks if a `TypedColumn` has been inserted with // specific input type and schema by `withInputType`. val needInputType = typedCol.expr.find { case ta: TypedAggregateExpression if ta.inputDeserializer.isEmpty => true case _ => false }.isDefined if (!needInputType) { typedCol } else { throw QueryCompilationErrors.cannotPassTypedColumnInUntypedSelectError(typedCol.toString) } case other => other } Project(untypedCols.map(_.named), logicalPlan) } /** * Selects a set of columns. This is a variant of `select` that can only select * existing columns using column names (i.e. cannot construct expressions). * * {{{ * // The following two are equivalent: * ds.select("colA", "colB") * ds.select($"colA", $"colB") * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def select(col: String, cols: String*): DataFrame = select((col +: cols).map(Column(_)) : _*) /** * Selects a set of SQL expressions. This is a variant of `select` that accepts * SQL expressions. * * {{{ * // The following are equivalent: * ds.selectExpr("colA", "colB as newName", "abs(colC)") * ds.select(expr("colA"), expr("colB as newName"), expr("abs(colC)")) * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def selectExpr(exprs: String*): DataFrame = { select(exprs.map { expr => Column(sparkSession.sessionState.sqlParser.parseExpression(expr)) }: _*) } /** * Returns a new Dataset by computing the given [[Column]] expression for each element. * * {{{ * val ds = Seq(1, 2, 3).toDS() * val newDS = ds.select(expr("value + 1").as[Int]) * }}} * * @group typedrel * @since 1.6.0 */ def select[U1](c1: TypedColumn[T, U1]): Dataset[U1] = { implicit val encoder = c1.encoder val project = Project(c1.withInputType(exprEnc, logicalPlan.output).named :: Nil, logicalPlan) if (!encoder.isSerializedAsStructForTopLevel) { new Dataset[U1](sparkSession, project, encoder) } else { // Flattens inner fields of U1 new Dataset[Tuple1[U1]](sparkSession, project, ExpressionEncoder.tuple(encoder)).map(_._1) } } /** * Internal helper function for building typed selects that return tuples. For simplicity and * code reuse, we do this without the help of the type system and then use helper functions * that cast appropriately for the user facing interface. */ protected def selectUntyped(columns: TypedColumn[_, _]*): Dataset[_] = { val encoders = columns.map(_.encoder) val namedColumns = columns.map(_.withInputType(exprEnc, logicalPlan.output).named) val execution = new QueryExecution(sparkSession, Project(namedColumns, logicalPlan)) new Dataset(execution, ExpressionEncoder.tuple(encoders)) } /** * Returns a new Dataset by computing the given [[Column]] expressions for each element. * * @group typedrel * @since 1.6.0 */ def select[U1, U2](c1: TypedColumn[T, U1], c2: TypedColumn[T, U2]): Dataset[(U1, U2)] = selectUntyped(c1, c2).asInstanceOf[Dataset[(U1, U2)]] /** * Returns a new Dataset by computing the given [[Column]] expressions for each element. * * @group typedrel * @since 1.6.0 */ def select[U1, U2, U3]( c1: TypedColumn[T, U1], c2: TypedColumn[T, U2], c3: TypedColumn[T, U3]): Dataset[(U1, U2, U3)] = selectUntyped(c1, c2, c3).asInstanceOf[Dataset[(U1, U2, U3)]] /** * Returns a new Dataset by computing the given [[Column]] expressions for each element. * * @group typedrel * @since 1.6.0 */ def select[U1, U2, U3, U4]( c1: TypedColumn[T, U1], c2: TypedColumn[T, U2], c3: TypedColumn[T, U3], c4: TypedColumn[T, U4]): Dataset[(U1, U2, U3, U4)] = selectUntyped(c1, c2, c3, c4).asInstanceOf[Dataset[(U1, U2, U3, U4)]] /** * Returns a new Dataset by computing the given [[Column]] expressions for each element. * * @group typedrel * @since 1.6.0 */ def select[U1, U2, U3, U4, U5]( c1: TypedColumn[T, U1], c2: TypedColumn[T, U2], c3: TypedColumn[T, U3], c4: TypedColumn[T, U4], c5: TypedColumn[T, U5]): Dataset[(U1, U2, U3, U4, U5)] = selectUntyped(c1, c2, c3, c4, c5).asInstanceOf[Dataset[(U1, U2, U3, U4, U5)]] /** * Filters rows using the given condition. * {{{ * // The following are equivalent: * peopleDs.filter($"age" > 15) * peopleDs.where($"age" > 15) * }}} * * @group typedrel * @since 1.6.0 */ def filter(condition: Column): Dataset[T] = withTypedPlan { Filter(condition.expr, logicalPlan) } /** * Filters rows using the given SQL expression. * {{{ * peopleDs.filter("age > 15") * }}} * * @group typedrel * @since 1.6.0 */ def filter(conditionExpr: String): Dataset[T] = { filter(Column(sparkSession.sessionState.sqlParser.parseExpression(conditionExpr))) } /** * Filters rows using the given condition. This is an alias for `filter`. * {{{ * // The following are equivalent: * peopleDs.filter($"age" > 15) * peopleDs.where($"age" > 15) * }}} * * @group typedrel * @since 1.6.0 */ def where(condition: Column): Dataset[T] = filter(condition) /** * Filters rows using the given SQL expression. * {{{ * peopleDs.where("age > 15") * }}} * * @group typedrel * @since 1.6.0 */ def where(conditionExpr: String): Dataset[T] = { filter(Column(sparkSession.sessionState.sqlParser.parseExpression(conditionExpr))) } /** * Groups the Dataset using the specified columns, so we can run aggregation on them. See * [[RelationalGroupedDataset]] for all the available aggregate functions. * * {{{ * // Compute the average for all numeric columns grouped by department. * ds.groupBy($"department").avg() * * // Compute the max age and average salary, grouped by department and gender. * ds.groupBy($"department", $"gender").agg(Map( * "salary" -> "avg", * "age" -> "max" * )) * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def groupBy(cols: Column*): RelationalGroupedDataset = { RelationalGroupedDataset(toDF(), cols.map(_.expr), RelationalGroupedDataset.GroupByType) } /** * Create a multi-dimensional rollup for the current Dataset using the specified columns, * so we can run aggregation on them. * See [[RelationalGroupedDataset]] for all the available aggregate functions. * * {{{ * // Compute the average for all numeric columns rolled up by department and group. * ds.rollup($"department", $"group").avg() * * // Compute the max age and average salary, rolled up by department and gender. * ds.rollup($"department", $"gender").agg(Map( * "salary" -> "avg", * "age" -> "max" * )) * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def rollup(cols: Column*): RelationalGroupedDataset = { RelationalGroupedDataset(toDF(), cols.map(_.expr), RelationalGroupedDataset.RollupType) } /** * Create a multi-dimensional cube for the current Dataset using the specified columns, * so we can run aggregation on them. * See [[RelationalGroupedDataset]] for all the available aggregate functions. * * {{{ * // Compute the average for all numeric columns cubed by department and group. * ds.cube($"department", $"group").avg() * * // Compute the max age and average salary, cubed by department and gender. * ds.cube($"department", $"gender").agg(Map( * "salary" -> "avg", * "age" -> "max" * )) * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def cube(cols: Column*): RelationalGroupedDataset = { RelationalGroupedDataset(toDF(), cols.map(_.expr), RelationalGroupedDataset.CubeType) } /** * Groups the Dataset using the specified columns, so that we can run aggregation on them. * See [[RelationalGroupedDataset]] for all the available aggregate functions. * * This is a variant of groupBy that can only group by existing columns using column names * (i.e. cannot construct expressions). * * {{{ * // Compute the average for all numeric columns grouped by department. * ds.groupBy("department").avg() * * // Compute the max age and average salary, grouped by department and gender. * ds.groupBy($"department", $"gender").agg(Map( * "salary" -> "avg", * "age" -> "max" * )) * }}} * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def groupBy(col1: String, cols: String*): RelationalGroupedDataset = { val colNames: Seq[String] = col1 +: cols RelationalGroupedDataset( toDF(), colNames.map(colName => resolve(colName)), RelationalGroupedDataset.GroupByType) } /** * (Scala-specific) * Reduces the elements of this Dataset using the specified binary function. The given `func` * must be commutative and associative or the result may be non-deterministic. * * @group action * @since 1.6.0 */ def reduce(func: (T, T) => T): T = withNewRDDExecutionId { rdd.reduce(func) } /** * (Java-specific) * Reduces the elements of this Dataset using the specified binary function. The given `func` * must be commutative and associative or the result may be non-deterministic. * * @group action * @since 1.6.0 */ def reduce(func: ReduceFunction[T]): T = reduce(func.call(_, _)) /** * (Scala-specific) * Returns a [[KeyValueGroupedDataset]] where the data is grouped by the given key `func`. * * @group typedrel * @since 2.0.0 */ def groupByKey[K: Encoder](func: T => K): KeyValueGroupedDataset[K, T] = { val withGroupingKey = AppendColumns(func, logicalPlan) val executed = sparkSession.sessionState.executePlan(withGroupingKey) new KeyValueGroupedDataset( encoderFor[K], encoderFor[T], executed, logicalPlan.output, withGroupingKey.newColumns) } /** * (Java-specific) * Returns a [[KeyValueGroupedDataset]] where the data is grouped by the given key `func`. * * @group typedrel * @since 2.0.0 */ def groupByKey[K](func: MapFunction[T, K], encoder: Encoder[K]): KeyValueGroupedDataset[K, T] = groupByKey(func.call(_))(encoder) /** * Create a multi-dimensional rollup for the current Dataset using the specified columns, * so we can run aggregation on them. * See [[RelationalGroupedDataset]] for all the available aggregate functions. * * This is a variant of rollup that can only group by existing columns using column names * (i.e. cannot construct expressions). * * {{{ * // Compute the average for all numeric columns rolled up by department and group. * ds.rollup("department", "group").avg() * * // Compute the max age and average salary, rolled up by department and gender. * ds.rollup($"department", $"gender").agg(Map( * "salary" -> "avg", * "age" -> "max" * )) * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def rollup(col1: String, cols: String*): RelationalGroupedDataset = { val colNames: Seq[String] = col1 +: cols RelationalGroupedDataset( toDF(), colNames.map(colName => resolve(colName)), RelationalGroupedDataset.RollupType) } /** * Create a multi-dimensional cube for the current Dataset using the specified columns, * so we can run aggregation on them. * See [[RelationalGroupedDataset]] for all the available aggregate functions. * * This is a variant of cube that can only group by existing columns using column names * (i.e. cannot construct expressions). * * {{{ * // Compute the average for all numeric columns cubed by department and group. * ds.cube("department", "group").avg() * * // Compute the max age and average salary, cubed by department and gender. * ds.cube($"department", $"gender").agg(Map( * "salary" -> "avg", * "age" -> "max" * )) * }}} * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def cube(col1: String, cols: String*): RelationalGroupedDataset = { val colNames: Seq[String] = col1 +: cols RelationalGroupedDataset( toDF(), colNames.map(colName => resolve(colName)), RelationalGroupedDataset.CubeType) } /** * (Scala-specific) Aggregates on the entire Dataset without groups. * {{{ * // ds.agg(...) is a shorthand for ds.groupBy().agg(...) * ds.agg("age" -> "max", "salary" -> "avg") * ds.groupBy().agg("age" -> "max", "salary" -> "avg") * }}} * * @group untypedrel * @since 2.0.0 */ def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame = { groupBy().agg(aggExpr, aggExprs : _*) } /** * (Scala-specific) Aggregates on the entire Dataset without groups. * {{{ * // ds.agg(...) is a shorthand for ds.groupBy().agg(...) * ds.agg(Map("age" -> "max", "salary" -> "avg")) * ds.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }}} * * @group untypedrel * @since 2.0.0 */ def agg(exprs: Map[String, String]): DataFrame = groupBy().agg(exprs) /** * (Java-specific) Aggregates on the entire Dataset without groups. * {{{ * // ds.agg(...) is a shorthand for ds.groupBy().agg(...) * ds.agg(Map("age" -> "max", "salary" -> "avg")) * ds.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }}} * * @group untypedrel * @since 2.0.0 */ def agg(exprs: java.util.Map[String, String]): DataFrame = groupBy().agg(exprs) /** * Aggregates on the entire Dataset without groups. * {{{ * // ds.agg(...) is a shorthand for ds.groupBy().agg(...) * ds.agg(max($"age"), avg($"salary")) * ds.groupBy().agg(max($"age"), avg($"salary")) * }}} * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def agg(expr: Column, exprs: Column*): DataFrame = groupBy().agg(expr, exprs : _*) /** * Define (named) metrics to observe on the Dataset. This method returns an 'observed' Dataset * that returns the same result as the input, with the following guarantees: *
    *
  • It will compute the defined aggregates (metrics) on all the data that is flowing through * the Dataset at that point.
  • *
  • It will report the value of the defined aggregate columns as soon as we reach a completion * point. A completion point is either the end of a query (batch mode) or the end of a streaming * epoch. The value of the aggregates only reflects the data processed since the previous * completion point.
  • *
* Please note that continuous execution is currently not supported. * * The metrics columns must either contain a literal (e.g. lit(42)), or should contain one or * more aggregate functions (e.g. sum(a) or sum(a + b) + avg(c) - lit(1)). Expressions that * contain references to the input Dataset's columns must always be wrapped in an aggregate * function. * * A user can observe these metrics by either adding * [[org.apache.spark.sql.streaming.StreamingQueryListener]] or a * [[org.apache.spark.sql.util.QueryExecutionListener]] to the spark session. * * {{{ * // Monitor the metrics using a listener. * spark.streams.addListener(new StreamingQueryListener() { * override def onQueryProgress(event: QueryProgressEvent): Unit = { * event.progress.observedMetrics.asScala.get("my_event").foreach { row => * // Trigger if the number of errors exceeds 5 percent * val num_rows = row.getAs[Long]("rc") * val num_error_rows = row.getAs[Long]("erc") * val ratio = num_error_rows.toDouble / num_rows * if (ratio > 0.05) { * // Trigger alert * } * } * } * def onQueryStarted(event: QueryStartedEvent): Unit = {} * def onQueryTerminated(event: QueryTerminatedEvent): Unit = {} * }) * // Observe row count (rc) and error row count (erc) in the streaming Dataset * val observed_ds = ds.observe("my_event", count(lit(1)).as("rc"), count($"error").as("erc")) * observed_ds.writeStream.format("...").start() * }}} * * @group typedrel * @since 3.0.0 */ def observe(name: String, expr: Column, exprs: Column*): Dataset[T] = withTypedPlan { CollectMetrics(name, (expr +: exprs).map(_.named), logicalPlan) } /** * Returns a new Dataset by taking the first `n` rows. The difference between this function * and `head` is that `head` is an action and returns an array (by triggering query execution) * while `limit` returns a new Dataset. * * @group typedrel * @since 2.0.0 */ def limit(n: Int): Dataset[T] = withTypedPlan { Limit(Literal(n), logicalPlan) } /** * Returns a new Dataset containing union of rows in this Dataset and another Dataset. * * This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does * deduplication of elements), use this function followed by a [[distinct]]. * * Also as standard in SQL, this function resolves columns by position (not by name): * * {{{ * val df1 = Seq((1, 2, 3)).toDF("col0", "col1", "col2") * val df2 = Seq((4, 5, 6)).toDF("col1", "col2", "col0") * df1.union(df2).show * * // output: * // +----+----+----+ * // |col0|col1|col2| * // +----+----+----+ * // | 1| 2| 3| * // | 4| 5| 6| * // +----+----+----+ * }}} * * Notice that the column positions in the schema aren't necessarily matched with the * fields in the strongly typed objects in a Dataset. This function resolves columns * by their positions in the schema, not the fields in the strongly typed objects. Use * [[unionByName]] to resolve columns by field name in the typed objects. * * @group typedrel * @since 2.0.0 */ def union(other: Dataset[T]): Dataset[T] = withSetOperator { // This breaks caching, but it's usually ok because it addresses a very specific use case: // using union to union many files or partitions. CombineUnions(Union(logicalPlan, other.logicalPlan)) } /** * Returns a new Dataset containing union of rows in this Dataset and another Dataset. * This is an alias for `union`. * * This is equivalent to `UNION ALL` in SQL. To do a SQL-style set union (that does * deduplication of elements), use this function followed by a [[distinct]]. * * Also as standard in SQL, this function resolves columns by position (not by name). * * @group typedrel * @since 2.0.0 */ def unionAll(other: Dataset[T]): Dataset[T] = union(other) /** * Returns a new Dataset containing union of rows in this Dataset and another Dataset. * * This is different from both `UNION ALL` and `UNION DISTINCT` in SQL. To do a SQL-style set * union (that does deduplication of elements), use this function followed by a [[distinct]]. * * The difference between this function and [[union]] is that this function * resolves columns by name (not by position): * * {{{ * val df1 = Seq((1, 2, 3)).toDF("col0", "col1", "col2") * val df2 = Seq((4, 5, 6)).toDF("col1", "col2", "col0") * df1.unionByName(df2).show * * // output: * // +----+----+----+ * // |col0|col1|col2| * // +----+----+----+ * // | 1| 2| 3| * // | 6| 4| 5| * // +----+----+----+ * }}} * * @group typedrel * @since 2.3.0 */ def unionByName(other: Dataset[T]): Dataset[T] = unionByName(other, false) /** * Returns a new Dataset containing union of rows in this Dataset and another Dataset. * * The difference between this function and [[union]] is that this function * resolves columns by name (not by position). * * When the parameter `allowMissingColumns` is `true`, the set of column names * in this and other `Dataset` can differ; missing columns will be filled with null. * Further, the missing columns of this `Dataset` will be added at the end * in the schema of the union result: * * {{{ * val df1 = Seq((1, 2, 3)).toDF("col0", "col1", "col2") * val df2 = Seq((4, 5, 6)).toDF("col1", "col0", "col3") * df1.unionByName(df2, true).show * * // output: "col3" is missing at left df1 and added at the end of schema. * // +----+----+----+----+ * // |col0|col1|col2|col3| * // +----+----+----+----+ * // | 1| 2| 3|null| * // | 5| 4|null| 6| * // +----+----+----+----+ * * df2.unionByName(df1, true).show * * // output: "col2" is missing at left df2 and added at the end of schema. * // +----+----+----+----+ * // |col1|col0|col3|col2| * // +----+----+----+----+ * // | 4| 5| 6|null| * // | 2| 1|null| 3| * // +----+----+----+----+ * }}} * * Note that `allowMissingColumns` supports nested column in struct types. Missing nested columns * of struct columns with the same name will also be filled with null values and added to the end * of struct. This currently does not support nested columns in array and map types. * * @group typedrel * @since 3.1.0 */ def unionByName(other: Dataset[T], allowMissingColumns: Boolean): Dataset[T] = withSetOperator { // This breaks caching, but it's usually ok because it addresses a very specific use case: // using union to union many files or partitions. CombineUnions(Union(logicalPlan :: other.logicalPlan :: Nil, true, allowMissingColumns)) } /** * Returns a new Dataset containing rows only in both this Dataset and another Dataset. * This is equivalent to `INTERSECT` in SQL. * * @note Equality checking is performed directly on the encoded representation of the data * and thus is not affected by a custom `equals` function defined on `T`. * * @group typedrel * @since 1.6.0 */ def intersect(other: Dataset[T]): Dataset[T] = withSetOperator { Intersect(logicalPlan, other.logicalPlan, isAll = false) } /** * Returns a new Dataset containing rows only in both this Dataset and another Dataset while * preserving the duplicates. * This is equivalent to `INTERSECT ALL` in SQL. * * @note Equality checking is performed directly on the encoded representation of the data * and thus is not affected by a custom `equals` function defined on `T`. Also as standard * in SQL, this function resolves columns by position (not by name). * * @group typedrel * @since 2.4.0 */ def intersectAll(other: Dataset[T]): Dataset[T] = withSetOperator { Intersect(logicalPlan, other.logicalPlan, isAll = true) } /** * Returns a new Dataset containing rows in this Dataset but not in another Dataset. * This is equivalent to `EXCEPT DISTINCT` in SQL. * * @note Equality checking is performed directly on the encoded representation of the data * and thus is not affected by a custom `equals` function defined on `T`. * * @group typedrel * @since 2.0.0 */ def except(other: Dataset[T]): Dataset[T] = withSetOperator { Except(logicalPlan, other.logicalPlan, isAll = false) } /** * Returns a new Dataset containing rows in this Dataset but not in another Dataset while * preserving the duplicates. * This is equivalent to `EXCEPT ALL` in SQL. * * @note Equality checking is performed directly on the encoded representation of the data * and thus is not affected by a custom `equals` function defined on `T`. Also as standard in * SQL, this function resolves columns by position (not by name). * * @group typedrel * @since 2.4.0 */ def exceptAll(other: Dataset[T]): Dataset[T] = withSetOperator { Except(logicalPlan, other.logicalPlan, isAll = true) } /** * Returns a new [[Dataset]] by sampling a fraction of rows (without replacement), * using a user-supplied seed. * * @param fraction Fraction of rows to generate, range [0.0, 1.0]. * @param seed Seed for sampling. * * @note This is NOT guaranteed to provide exactly the fraction of the count * of the given [[Dataset]]. * * @group typedrel * @since 2.3.0 */ def sample(fraction: Double, seed: Long): Dataset[T] = { sample(withReplacement = false, fraction = fraction, seed = seed) } /** * Returns a new [[Dataset]] by sampling a fraction of rows (without replacement), * using a random seed. * * @param fraction Fraction of rows to generate, range [0.0, 1.0]. * * @note This is NOT guaranteed to provide exactly the fraction of the count * of the given [[Dataset]]. * * @group typedrel * @since 2.3.0 */ def sample(fraction: Double): Dataset[T] = { sample(withReplacement = false, fraction = fraction) } /** * Returns a new [[Dataset]] by sampling a fraction of rows, using a user-supplied seed. * * @param withReplacement Sample with replacement or not. * @param fraction Fraction of rows to generate, range [0.0, 1.0]. * @param seed Seed for sampling. * * @note This is NOT guaranteed to provide exactly the fraction of the count * of the given [[Dataset]]. * * @group typedrel * @since 1.6.0 */ def sample(withReplacement: Boolean, fraction: Double, seed: Long): Dataset[T] = { withTypedPlan { Sample(0.0, fraction, withReplacement, seed, logicalPlan) } } /** * Returns a new [[Dataset]] by sampling a fraction of rows, using a random seed. * * @param withReplacement Sample with replacement or not. * @param fraction Fraction of rows to generate, range [0.0, 1.0]. * * @note This is NOT guaranteed to provide exactly the fraction of the total count * of the given [[Dataset]]. * * @group typedrel * @since 1.6.0 */ def sample(withReplacement: Boolean, fraction: Double): Dataset[T] = { sample(withReplacement, fraction, Utils.random.nextLong) } /** * Randomly splits this Dataset with the provided weights. * * @param weights weights for splits, will be normalized if they don't sum to 1. * @param seed Seed for sampling. * * For Java API, use [[randomSplitAsList]]. * * @group typedrel * @since 2.0.0 */ def randomSplit(weights: Array[Double], seed: Long): Array[Dataset[T]] = { require(weights.forall(_ >= 0), s"Weights must be nonnegative, but got ${weights.mkString("[", ",", "]")}") require(weights.sum > 0, s"Sum of weights must be positive, but got ${weights.mkString("[", ",", "]")}") // It is possible that the underlying dataframe doesn't guarantee the ordering of rows in its // constituent partitions each time a split is materialized which could result in // overlapping splits. To prevent this, we explicitly sort each input partition to make the // ordering deterministic. Note that MapTypes cannot be sorted and are explicitly pruned out // from the sort order. val sortOrder = logicalPlan.output .filter(attr => RowOrdering.isOrderable(attr.dataType)) .map(SortOrder(_, Ascending)) val plan = if (sortOrder.nonEmpty) { Sort(sortOrder, global = false, logicalPlan) } else { // SPARK-12662: If sort order is empty, we materialize the dataset to guarantee determinism cache() logicalPlan } val sum = weights.sum val normalizedCumWeights = weights.map(_ / sum).scanLeft(0.0d)(_ + _) normalizedCumWeights.sliding(2).map { x => new Dataset[T]( sparkSession, Sample(x(0), x(1), withReplacement = false, seed, plan), encoder) }.toArray } /** * Returns a Java list that contains randomly split Dataset with the provided weights. * * @param weights weights for splits, will be normalized if they don't sum to 1. * @param seed Seed for sampling. * * @group typedrel * @since 2.0.0 */ def randomSplitAsList(weights: Array[Double], seed: Long): java.util.List[Dataset[T]] = { val values = randomSplit(weights, seed) java.util.Arrays.asList(values : _*) } /** * Randomly splits this Dataset with the provided weights. * * @param weights weights for splits, will be normalized if they don't sum to 1. * @group typedrel * @since 2.0.0 */ def randomSplit(weights: Array[Double]): Array[Dataset[T]] = { randomSplit(weights, Utils.random.nextLong) } /** * Randomly splits this Dataset with the provided weights. Provided for the Python Api. * * @param weights weights for splits, will be normalized if they don't sum to 1. * @param seed Seed for sampling. */ private[spark] def randomSplit(weights: List[Double], seed: Long): Array[Dataset[T]] = { randomSplit(weights.toArray, seed) } /** * (Scala-specific) Returns a new Dataset where each row has been expanded to zero or more * rows by the provided function. This is similar to a `LATERAL VIEW` in HiveQL. The columns of * the input row are implicitly joined with each row that is output by the function. * * Given that this is deprecated, as an alternative, you can explode columns either using * `functions.explode()` or `flatMap()`. The following example uses these alternatives to count * the number of books that contain a given word: * * {{{ * case class Book(title: String, words: String) * val ds: Dataset[Book] * * val allWords = ds.select($"title", explode(split($"words", " ")).as("word")) * * val bookCountPerWord = allWords.groupBy("word").agg(count_distinct("title")) * }}} * * Using `flatMap()` this can similarly be exploded as: * * {{{ * ds.flatMap(_.words.split(" ")) * }}} * * @group untypedrel * @since 2.0.0 */ @deprecated("use flatMap() or select() with functions.explode() instead", "2.0.0") def explode[A <: Product : TypeTag](input: Column*)(f: Row => TraversableOnce[A]): DataFrame = { val elementSchema = ScalaReflection.schemaFor[A].dataType.asInstanceOf[StructType] val convert = CatalystTypeConverters.createToCatalystConverter(elementSchema) val rowFunction = f.andThen(_.map(convert(_).asInstanceOf[InternalRow])) val generator = UserDefinedGenerator(elementSchema, rowFunction, input.map(_.expr)) withPlan { Generate(generator, unrequiredChildIndex = Nil, outer = false, qualifier = None, generatorOutput = Nil, logicalPlan) } } /** * (Scala-specific) Returns a new Dataset where a single column has been expanded to zero * or more rows by the provided function. This is similar to a `LATERAL VIEW` in HiveQL. All * columns of the input row are implicitly joined with each value that is output by the function. * * Given that this is deprecated, as an alternative, you can explode columns either using * `functions.explode()`: * * {{{ * ds.select(explode(split($"words", " ")).as("word")) * }}} * * or `flatMap()`: * * {{{ * ds.flatMap(_.words.split(" ")) * }}} * * @group untypedrel * @since 2.0.0 */ @deprecated("use flatMap() or select() with functions.explode() instead", "2.0.0") def explode[A, B : TypeTag](inputColumn: String, outputColumn: String)(f: A => TraversableOnce[B]) : DataFrame = { val dataType = ScalaReflection.schemaFor[B].dataType val attributes = AttributeReference(outputColumn, dataType)() :: Nil // TODO handle the metadata? val elementSchema = attributes.toStructType def rowFunction(row: Row): TraversableOnce[InternalRow] = { val convert = CatalystTypeConverters.createToCatalystConverter(dataType) f(row(0).asInstanceOf[A]).map(o => InternalRow(convert(o))) } val generator = UserDefinedGenerator(elementSchema, rowFunction, apply(inputColumn).expr :: Nil) withPlan { Generate(generator, unrequiredChildIndex = Nil, outer = false, qualifier = None, generatorOutput = Nil, logicalPlan) } } /** * Returns a new Dataset by adding a column or replacing the existing column that has * the same name. * * `column`'s expression must only refer to attributes supplied by this Dataset. It is an * error to add a column that refers to some other Dataset. * * @note this method introduces a projection internally. Therefore, calling it multiple times, * for instance, via loops in order to add multiple columns can generate big plans which * can cause performance issues and even `StackOverflowException`. To avoid this, * use `select` with the multiple columns at once. * * @group untypedrel * @since 2.0.0 */ def withColumn(colName: String, col: Column): DataFrame = withColumns(Seq(colName), Seq(col)) /** * Returns a new Dataset by adding columns or replacing the existing columns that has * the same names. */ private[spark] def withColumns(colNames: Seq[String], cols: Seq[Column]): DataFrame = { require(colNames.size == cols.size, s"The size of column names: ${colNames.size} isn't equal to " + s"the size of columns: ${cols.size}") SchemaUtils.checkColumnNameDuplication( colNames, "in given column names", sparkSession.sessionState.conf.caseSensitiveAnalysis) val resolver = sparkSession.sessionState.analyzer.resolver val output = queryExecution.analyzed.output val columnSeq = colNames.zip(cols) val replacedAndExistingColumns = output.map { field => columnSeq.find { case (colName, _) => resolver(field.name, colName) } match { case Some((colName: String, col: Column)) => col.as(colName) case _ => Column(field) } } val newColumns = columnSeq.filter { case (colName, col) => !output.exists(f => resolver(f.name, colName)) }.map { case (colName, col) => col.as(colName) } select(replacedAndExistingColumns ++ newColumns : _*) } /** * Returns a new Dataset by adding columns with metadata. */ private[spark] def withColumns( colNames: Seq[String], cols: Seq[Column], metadata: Seq[Metadata]): DataFrame = { require(colNames.size == metadata.size, s"The size of column names: ${colNames.size} isn't equal to " + s"the size of metadata elements: ${metadata.size}") val newCols = colNames.zip(cols).zip(metadata).map { case ((colName, col), metadata) => col.as(colName, metadata) } withColumns(colNames, newCols) } /** * Returns a new Dataset by adding a column with metadata. */ private[spark] def withColumn(colName: String, col: Column, metadata: Metadata): DataFrame = withColumns(Seq(colName), Seq(col), Seq(metadata)) /** * Returns a new Dataset with a column renamed. * This is a no-op if schema doesn't contain existingName. * * @group untypedrel * @since 2.0.0 */ def withColumnRenamed(existingName: String, newName: String): DataFrame = { val resolver = sparkSession.sessionState.analyzer.resolver val output = queryExecution.analyzed.output val shouldRename = output.exists(f => resolver(f.name, existingName)) if (shouldRename) { val columns = output.map { col => if (resolver(col.name, existingName)) { Column(col).as(newName) } else { Column(col) } } select(columns : _*) } else { toDF() } } /** * Returns a new Dataset with a column dropped. This is a no-op if schema doesn't contain * column name. * * This method can only be used to drop top level columns. the colName string is treated * literally without further interpretation. * * @group untypedrel * @since 2.0.0 */ def drop(colName: String): DataFrame = { drop(Seq(colName) : _*) } /** * Returns a new Dataset with columns dropped. * This is a no-op if schema doesn't contain column name(s). * * This method can only be used to drop top level columns. the colName string is treated literally * without further interpretation. * * @group untypedrel * @since 2.0.0 */ @scala.annotation.varargs def drop(colNames: String*): DataFrame = { val resolver = sparkSession.sessionState.analyzer.resolver val allColumns = queryExecution.analyzed.output val remainingCols = allColumns.filter { attribute => colNames.forall(n => !resolver(attribute.name, n)) }.map(attribute => Column(attribute)) if (remainingCols.size == allColumns.size) { toDF() } else { this.select(remainingCols: _*) } } /** * Returns a new Dataset with a column dropped. * This version of drop accepts a [[Column]] rather than a name. * This is a no-op if the Dataset doesn't have a column * with an equivalent expression. * * @group untypedrel * @since 2.0.0 */ def drop(col: Column): DataFrame = { val expression = col match { case Column(u: UnresolvedAttribute) => queryExecution.analyzed.resolveQuoted( u.name, sparkSession.sessionState.analyzer.resolver).getOrElse(u) case Column(expr: Expression) => expr } val attrs = this.logicalPlan.output val colsAfterDrop = attrs.filter { attr => !attr.semanticEquals(expression) }.map(attr => Column(attr)) select(colsAfterDrop : _*) } /** * Returns a new Dataset that contains only the unique rows from this Dataset. * This is an alias for `distinct`. * * For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it * will keep all data across triggers as intermediate state to drop duplicates rows. You can use * [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit * the state. In addition, too late data older than watermark will be dropped to avoid any * possibility of duplicates. * * @group typedrel * @since 2.0.0 */ def dropDuplicates(): Dataset[T] = dropDuplicates(this.columns) /** * (Scala-specific) Returns a new Dataset with duplicate rows removed, considering only * the subset of columns. * * For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it * will keep all data across triggers as intermediate state to drop duplicates rows. You can use * [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit * the state. In addition, too late data older than watermark will be dropped to avoid any * possibility of duplicates. * * @group typedrel * @since 2.0.0 */ def dropDuplicates(colNames: Seq[String]): Dataset[T] = withTypedPlan { val resolver = sparkSession.sessionState.analyzer.resolver val allColumns = queryExecution.analyzed.output // SPARK-31990: We must keep `toSet.toSeq` here because of the backward compatibility issue // (the Streaming's state store depends on the `groupCols` order). val groupCols = colNames.toSet.toSeq.flatMap { (colName: String) => // It is possibly there are more than one columns with the same name, // so we call filter instead of find. val cols = allColumns.filter(col => resolver(col.name, colName)) if (cols.isEmpty) { throw QueryCompilationErrors.cannotResolveColumnNameAmongAttributesError( colName, schema.fieldNames.mkString(", ")) } cols } Deduplicate(groupCols, logicalPlan) } /** * Returns a new Dataset with duplicate rows removed, considering only * the subset of columns. * * For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it * will keep all data across triggers as intermediate state to drop duplicates rows. You can use * [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit * the state. In addition, too late data older than watermark will be dropped to avoid any * possibility of duplicates. * * @group typedrel * @since 2.0.0 */ def dropDuplicates(colNames: Array[String]): Dataset[T] = dropDuplicates(colNames.toSeq) /** * Returns a new [[Dataset]] with duplicate rows removed, considering only * the subset of columns. * * For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it * will keep all data across triggers as intermediate state to drop duplicates rows. You can use * [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit * the state. In addition, too late data older than watermark will be dropped to avoid any * possibility of duplicates. * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def dropDuplicates(col1: String, cols: String*): Dataset[T] = { val colNames: Seq[String] = col1 +: cols dropDuplicates(colNames) } /** * Computes basic statistics for numeric and string columns, including count, mean, stddev, min, * and max. If no columns are given, this function computes statistics for all numerical or * string columns. * * This function is meant for exploratory data analysis, as we make no guarantee about the * backward compatibility of the schema of the resulting Dataset. If you want to * programmatically compute summary statistics, use the `agg` function instead. * * {{{ * ds.describe("age", "height").show() * * // output: * // summary age height * // count 10.0 10.0 * // mean 53.3 178.05 * // stddev 11.6 15.7 * // min 18.0 163.0 * // max 92.0 192.0 * }}} * * Use [[summary]] for expanded statistics and control over which statistics to compute. * * @param cols Columns to compute statistics on. * * @group action * @since 1.6.0 */ @scala.annotation.varargs def describe(cols: String*): DataFrame = { val selected = if (cols.isEmpty) this else select(cols.head, cols.tail: _*) selected.summary("count", "mean", "stddev", "min", "max") } /** * Computes specified statistics for numeric and string columns. Available statistics are: *
    *
  • count
  • *
  • mean
  • *
  • stddev
  • *
  • min
  • *
  • max
  • *
  • arbitrary approximate percentiles specified as a percentage (e.g. 75%)
  • *
  • count_distinct
  • *
  • approx_count_distinct
  • *
* * If no statistics are given, this function computes count, mean, stddev, min, * approximate quartiles (percentiles at 25%, 50%, and 75%), and max. * * This function is meant for exploratory data analysis, as we make no guarantee about the * backward compatibility of the schema of the resulting Dataset. If you want to * programmatically compute summary statistics, use the `agg` function instead. * * {{{ * ds.summary().show() * * // output: * // summary age height * // count 10.0 10.0 * // mean 53.3 178.05 * // stddev 11.6 15.7 * // min 18.0 163.0 * // 25% 24.0 176.0 * // 50% 24.0 176.0 * // 75% 32.0 180.0 * // max 92.0 192.0 * }}} * * {{{ * ds.summary("count", "min", "25%", "75%", "max").show() * * // output: * // summary age height * // count 10.0 10.0 * // min 18.0 163.0 * // 25% 24.0 176.0 * // 75% 32.0 180.0 * // max 92.0 192.0 * }}} * * To do a summary for specific columns first select them: * * {{{ * ds.select("age", "height").summary().show() * }}} * * Specify statistics to output custom summaries: * * {{{ * ds.summary("count", "count_distinct").show() * }}} * * The distinct count isn't included by default. * * You can also run approximate distinct counts which are faster: * * {{{ * ds.summary("count", "approx_count_distinct").show() * }}} * * See also [[describe]] for basic statistics. * * @param statistics Statistics from above list to be computed. * * @group action * @since 2.3.0 */ @scala.annotation.varargs def summary(statistics: String*): DataFrame = StatFunctions.summary(this, statistics.toSeq) /** * Returns the first `n` rows. * * @note this method should only be used if the resulting array is expected to be small, as * all the data is loaded into the driver's memory. * * @group action * @since 1.6.0 */ def head(n: Int): Array[T] = withAction("head", limit(n).queryExecution)(collectFromPlan) /** * Returns the first row. * @group action * @since 1.6.0 */ def head(): T = head(1).head /** * Returns the first row. Alias for head(). * @group action * @since 1.6.0 */ def first(): T = head() /** * Concise syntax for chaining custom transformations. * {{{ * def featurize(ds: Dataset[T]): Dataset[U] = ... * * ds * .transform(featurize) * .transform(...) * }}} * * @group typedrel * @since 1.6.0 */ def transform[U](t: Dataset[T] => Dataset[U]): Dataset[U] = t(this) /** * (Scala-specific) * Returns a new Dataset that only contains elements where `func` returns `true`. * * @group typedrel * @since 1.6.0 */ def filter(func: T => Boolean): Dataset[T] = { withTypedPlan(TypedFilter(func, logicalPlan)) } /** * (Java-specific) * Returns a new Dataset that only contains elements where `func` returns `true`. * * @group typedrel * @since 1.6.0 */ def filter(func: FilterFunction[T]): Dataset[T] = { withTypedPlan(TypedFilter(func, logicalPlan)) } /** * (Scala-specific) * Returns a new Dataset that contains the result of applying `func` to each element. * * @group typedrel * @since 1.6.0 */ def map[U : Encoder](func: T => U): Dataset[U] = withTypedPlan { MapElements[T, U](func, logicalPlan) } /** * (Java-specific) * Returns a new Dataset that contains the result of applying `func` to each element. * * @group typedrel * @since 1.6.0 */ def map[U](func: MapFunction[T, U], encoder: Encoder[U]): Dataset[U] = { implicit val uEnc = encoder withTypedPlan(MapElements[T, U](func, logicalPlan)) } /** * (Scala-specific) * Returns a new Dataset that contains the result of applying `func` to each partition. * * @group typedrel * @since 1.6.0 */ def mapPartitions[U : Encoder](func: Iterator[T] => Iterator[U]): Dataset[U] = { new Dataset[U]( sparkSession, MapPartitions[T, U](func, logicalPlan), implicitly[Encoder[U]]) } /** * (Java-specific) * Returns a new Dataset that contains the result of applying `f` to each partition. * * @group typedrel * @since 1.6.0 */ def mapPartitions[U](f: MapPartitionsFunction[T, U], encoder: Encoder[U]): Dataset[U] = { val func: (Iterator[T]) => Iterator[U] = x => f.call(x.asJava).asScala mapPartitions(func)(encoder) } /** * Returns a new `DataFrame` that contains the result of applying a serialized R function * `func` to each partition. */ private[sql] def mapPartitionsInR( func: Array[Byte], packageNames: Array[Byte], broadcastVars: Array[Broadcast[Object]], schema: StructType): DataFrame = { val rowEncoder = encoder.asInstanceOf[ExpressionEncoder[Row]] Dataset.ofRows( sparkSession, MapPartitionsInR(func, packageNames, broadcastVars, schema, rowEncoder, logicalPlan)) } /** * Applies a Scalar iterator Pandas UDF to each partition. The user-defined function * defines a transformation: `iter(pandas.DataFrame)` -> `iter(pandas.DataFrame)`. * Each partition is each iterator consisting of DataFrames as batches. * * This function uses Apache Arrow as serialization format between Java executors and Python * workers. */ private[sql] def mapInPandas(func: PythonUDF): DataFrame = { Dataset.ofRows( sparkSession, MapInPandas( func, func.dataType.asInstanceOf[StructType].toAttributes, logicalPlan)) } /** * (Scala-specific) * Returns a new Dataset by first applying a function to all elements of this Dataset, * and then flattening the results. * * @group typedrel * @since 1.6.0 */ def flatMap[U : Encoder](func: T => TraversableOnce[U]): Dataset[U] = mapPartitions(_.flatMap(func)) /** * (Java-specific) * Returns a new Dataset by first applying a function to all elements of this Dataset, * and then flattening the results. * * @group typedrel * @since 1.6.0 */ def flatMap[U](f: FlatMapFunction[T, U], encoder: Encoder[U]): Dataset[U] = { val func: (T) => Iterator[U] = x => f.call(x).asScala flatMap(func)(encoder) } /** * Applies a function `f` to all rows. * * @group action * @since 1.6.0 */ def foreach(f: T => Unit): Unit = withNewRDDExecutionId { rdd.foreach(f) } /** * (Java-specific) * Runs `func` on each element of this Dataset. * * @group action * @since 1.6.0 */ def foreach(func: ForeachFunction[T]): Unit = foreach(func.call(_)) /** * Applies a function `f` to each partition of this Dataset. * * @group action * @since 1.6.0 */ def foreachPartition(f: Iterator[T] => Unit): Unit = withNewRDDExecutionId { rdd.foreachPartition(f) } /** * (Java-specific) * Runs `func` on each partition of this Dataset. * * @group action * @since 1.6.0 */ def foreachPartition(func: ForeachPartitionFunction[T]): Unit = { foreachPartition((it: Iterator[T]) => func.call(it.asJava)) } /** * Returns the first `n` rows in the Dataset. * * Running take requires moving data into the application's driver process, and doing so with * a very large `n` can crash the driver process with OutOfMemoryError. * * @group action * @since 1.6.0 */ def take(n: Int): Array[T] = head(n) /** * Returns the last `n` rows in the Dataset. * * Running tail requires moving data into the application's driver process, and doing so with * a very large `n` can crash the driver process with OutOfMemoryError. * * @group action * @since 3.0.0 */ def tail(n: Int): Array[T] = withAction( "tail", withTypedPlan(Tail(Literal(n), logicalPlan)).queryExecution)(collectFromPlan) /** * Returns the first `n` rows in the Dataset as a list. * * Running take requires moving data into the application's driver process, and doing so with * a very large `n` can crash the driver process with OutOfMemoryError. * * @group action * @since 1.6.0 */ def takeAsList(n: Int): java.util.List[T] = java.util.Arrays.asList(take(n) : _*) /** * Returns an array that contains all rows in this Dataset. * * Running collect requires moving all the data into the application's driver process, and * doing so on a very large dataset can crash the driver process with OutOfMemoryError. * * For Java API, use [[collectAsList]]. * * @group action * @since 1.6.0 */ def collect(): Array[T] = withAction("collect", queryExecution)(collectFromPlan) /** * Returns a Java list that contains all rows in this Dataset. * * Running collect requires moving all the data into the application's driver process, and * doing so on a very large dataset can crash the driver process with OutOfMemoryError. * * @group action * @since 1.6.0 */ def collectAsList(): java.util.List[T] = withAction("collectAsList", queryExecution) { plan => val values = collectFromPlan(plan) java.util.Arrays.asList(values : _*) } /** * Returns an iterator that contains all rows in this Dataset. * * The iterator will consume as much memory as the largest partition in this Dataset. * * @note this results in multiple Spark jobs, and if the input Dataset is the result * of a wide transformation (e.g. join with different partitioners), to avoid * recomputing the input Dataset should be cached first. * * @group action * @since 2.0.0 */ def toLocalIterator(): java.util.Iterator[T] = { withAction("toLocalIterator", queryExecution) { plan => val fromRow = resolvedEnc.createDeserializer() plan.executeToIterator().map(fromRow).asJava } } /** * Returns the number of rows in the Dataset. * @group action * @since 1.6.0 */ def count(): Long = withAction("count", groupBy().count().queryExecution) { plan => plan.executeCollect().head.getLong(0) } /** * Returns a new Dataset that has exactly `numPartitions` partitions. * * @group typedrel * @since 1.6.0 */ def repartition(numPartitions: Int): Dataset[T] = withTypedPlan { Repartition(numPartitions, shuffle = true, logicalPlan) } private def repartitionByExpression( numPartitions: Option[Int], partitionExprs: Seq[Column]): Dataset[T] = { // The underlying `LogicalPlan` operator special-cases all-`SortOrder` arguments. // However, we don't want to complicate the semantics of this API method. // Instead, let's give users a friendly error message, pointing them to the new method. val sortOrders = partitionExprs.filter(_.expr.isInstanceOf[SortOrder]) if (sortOrders.nonEmpty) throw new IllegalArgumentException( s"""Invalid partitionExprs specified: $sortOrders |For range partitioning use repartitionByRange(...) instead. """.stripMargin) withTypedPlan { RepartitionByExpression(partitionExprs.map(_.expr), logicalPlan, numPartitions) } } /** * Returns a new Dataset partitioned by the given partitioning expressions into * `numPartitions`. The resulting Dataset is hash partitioned. * * This is the same operation as "DISTRIBUTE BY" in SQL (Hive QL). * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def repartition(numPartitions: Int, partitionExprs: Column*): Dataset[T] = { repartitionByExpression(Some(numPartitions), partitionExprs) } /** * Returns a new Dataset partitioned by the given partitioning expressions, using * `spark.sql.shuffle.partitions` as number of partitions. * The resulting Dataset is hash partitioned. * * This is the same operation as "DISTRIBUTE BY" in SQL (Hive QL). * * @group typedrel * @since 2.0.0 */ @scala.annotation.varargs def repartition(partitionExprs: Column*): Dataset[T] = { repartitionByExpression(None, partitionExprs) } private def repartitionByRange( numPartitions: Option[Int], partitionExprs: Seq[Column]): Dataset[T] = { require(partitionExprs.nonEmpty, "At least one partition-by expression must be specified.") val sortOrder: Seq[SortOrder] = partitionExprs.map(_.expr match { case expr: SortOrder => expr case expr: Expression => SortOrder(expr, Ascending) }) withTypedPlan { RepartitionByExpression(sortOrder, logicalPlan, numPartitions) } } /** * Returns a new Dataset partitioned by the given partitioning expressions into * `numPartitions`. The resulting Dataset is range partitioned. * * At least one partition-by expression must be specified. * When no explicit sort order is specified, "ascending nulls first" is assumed. * Note, the rows are not sorted in each partition of the resulting Dataset. * * * Note that due to performance reasons this method uses sampling to estimate the ranges. * Hence, the output may not be consistent, since sampling can return different values. * The sample size can be controlled by the config * `spark.sql.execution.rangeExchange.sampleSizePerPartition`. * * @group typedrel * @since 2.3.0 */ @scala.annotation.varargs def repartitionByRange(numPartitions: Int, partitionExprs: Column*): Dataset[T] = { repartitionByRange(Some(numPartitions), partitionExprs) } /** * Returns a new Dataset partitioned by the given partitioning expressions, using * `spark.sql.shuffle.partitions` as number of partitions. * The resulting Dataset is range partitioned. * * At least one partition-by expression must be specified. * When no explicit sort order is specified, "ascending nulls first" is assumed. * Note, the rows are not sorted in each partition of the resulting Dataset. * * Note that due to performance reasons this method uses sampling to estimate the ranges. * Hence, the output may not be consistent, since sampling can return different values. * The sample size can be controlled by the config * `spark.sql.execution.rangeExchange.sampleSizePerPartition`. * * @group typedrel * @since 2.3.0 */ @scala.annotation.varargs def repartitionByRange(partitionExprs: Column*): Dataset[T] = { repartitionByRange(None, partitionExprs) } /** * Returns a new Dataset that has exactly `numPartitions` partitions, when the fewer partitions * are requested. If a larger number of partitions is requested, it will stay at the current * number of partitions. Similar to coalesce defined on an `RDD`, this operation results in * a narrow dependency, e.g. if you go from 1000 partitions to 100 partitions, there will not * be a shuffle, instead each of the 100 new partitions will claim 10 of the current partitions. * * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1, * this may result in your computation taking place on fewer nodes than * you like (e.g. one node in the case of numPartitions = 1). To avoid this, * you can call repartition. This will add a shuffle step, but means the * current upstream partitions will be executed in parallel (per whatever * the current partitioning is). * * @group typedrel * @since 1.6.0 */ def coalesce(numPartitions: Int): Dataset[T] = withTypedPlan { Repartition(numPartitions, shuffle = false, logicalPlan) } /** * Returns a new Dataset that contains only the unique rows from this Dataset. * This is an alias for `dropDuplicates`. * * Note that for a streaming [[Dataset]], this method returns distinct rows only once * regardless of the output mode, which the behavior may not be same with `DISTINCT` in SQL * against streaming [[Dataset]]. * * @note Equality checking is performed directly on the encoded representation of the data * and thus is not affected by a custom `equals` function defined on `T`. * * @group typedrel * @since 2.0.0 */ def distinct(): Dataset[T] = dropDuplicates() /** * Persist this Dataset with the default storage level (`MEMORY_AND_DISK`). * * @group basic * @since 1.6.0 */ def persist(): this.type = { sparkSession.sharedState.cacheManager.cacheQuery(this) this } /** * Persist this Dataset with the default storage level (`MEMORY_AND_DISK`). * * @group basic * @since 1.6.0 */ def cache(): this.type = persist() /** * Persist this Dataset with the given storage level. * @param newLevel One of: `MEMORY_ONLY`, `MEMORY_AND_DISK`, `MEMORY_ONLY_SER`, * `MEMORY_AND_DISK_SER`, `DISK_ONLY`, `MEMORY_ONLY_2`, * `MEMORY_AND_DISK_2`, etc. * * @group basic * @since 1.6.0 */ def persist(newLevel: StorageLevel): this.type = { sparkSession.sharedState.cacheManager.cacheQuery(this, None, newLevel) this } /** * Get the Dataset's current storage level, or StorageLevel.NONE if not persisted. * * @group basic * @since 2.1.0 */ def storageLevel: StorageLevel = { sparkSession.sharedState.cacheManager.lookupCachedData(this).map { cachedData => cachedData.cachedRepresentation.cacheBuilder.storageLevel }.getOrElse(StorageLevel.NONE) } /** * Mark the Dataset as non-persistent, and remove all blocks for it from memory and disk. * This will not un-persist any cached data that is built upon this Dataset. * * @param blocking Whether to block until all blocks are deleted. * * @group basic * @since 1.6.0 */ def unpersist(blocking: Boolean): this.type = { sparkSession.sharedState.cacheManager.uncacheQuery( sparkSession, logicalPlan, cascade = false, blocking) this } /** * Mark the Dataset as non-persistent, and remove all blocks for it from memory and disk. * This will not un-persist any cached data that is built upon this Dataset. * * @group basic * @since 1.6.0 */ def unpersist(): this.type = unpersist(blocking = false) // Represents the `QueryExecution` used to produce the content of the Dataset as an `RDD`. @transient private lazy val rddQueryExecution: QueryExecution = { val deserialized = CatalystSerde.deserialize[T](logicalPlan) sparkSession.sessionState.executePlan(deserialized) } /** * Represents the content of the Dataset as an `RDD` of `T`. * * @group basic * @since 1.6.0 */ lazy val rdd: RDD[T] = { val objectType = exprEnc.deserializer.dataType rddQueryExecution.toRdd.mapPartitions { rows => rows.map(_.get(0, objectType).asInstanceOf[T]) } } /** * Returns the content of the Dataset as a `JavaRDD` of `T`s. * @group basic * @since 1.6.0 */ def toJavaRDD: JavaRDD[T] = rdd.toJavaRDD() /** * Returns the content of the Dataset as a `JavaRDD` of `T`s. * @group basic * @since 1.6.0 */ def javaRDD: JavaRDD[T] = toJavaRDD /** * Registers this Dataset as a temporary table using the given name. The lifetime of this * temporary table is tied to the [[SparkSession]] that was used to create this Dataset. * * @group basic * @since 1.6.0 */ @deprecated("Use createOrReplaceTempView(viewName) instead.", "2.0.0") def registerTempTable(tableName: String): Unit = { createOrReplaceTempView(tableName) } /** * Creates a local temporary view using the given name. The lifetime of this * temporary view is tied to the [[SparkSession]] that was used to create this Dataset. * * Local temporary view is session-scoped. Its lifetime is the lifetime of the session that * created it, i.e. it will be automatically dropped when the session terminates. It's not * tied to any databases, i.e. we can't use `db1.view1` to reference a local temporary view. * * @throws AnalysisException if the view name is invalid or already exists * * @group basic * @since 2.0.0 */ @throws[AnalysisException] def createTempView(viewName: String): Unit = withPlan { createTempViewCommand(viewName, replace = false, global = false) } /** * Creates a local temporary view using the given name. The lifetime of this * temporary view is tied to the [[SparkSession]] that was used to create this Dataset. * * @group basic * @since 2.0.0 */ def createOrReplaceTempView(viewName: String): Unit = withPlan { createTempViewCommand(viewName, replace = true, global = false) } /** * Creates a global temporary view using the given name. The lifetime of this * temporary view is tied to this Spark application. * * Global temporary view is cross-session. Its lifetime is the lifetime of the Spark application, * i.e. it will be automatically dropped when the application terminates. It's tied to a system * preserved database `global_temp`, and we must use the qualified name to refer a global temp * view, e.g. `SELECT * FROM global_temp.view1`. * * @throws AnalysisException if the view name is invalid or already exists * * @group basic * @since 2.1.0 */ @throws[AnalysisException] def createGlobalTempView(viewName: String): Unit = withPlan { createTempViewCommand(viewName, replace = false, global = true) } /** * Creates or replaces a global temporary view using the given name. The lifetime of this * temporary view is tied to this Spark application. * * Global temporary view is cross-session. Its lifetime is the lifetime of the Spark application, * i.e. it will be automatically dropped when the application terminates. It's tied to a system * preserved database `global_temp`, and we must use the qualified name to refer a global temp * view, e.g. `SELECT * FROM global_temp.view1`. * * @group basic * @since 2.2.0 */ def createOrReplaceGlobalTempView(viewName: String): Unit = withPlan { createTempViewCommand(viewName, replace = true, global = true) } private def createTempViewCommand( viewName: String, replace: Boolean, global: Boolean): CreateViewCommand = { val viewType = if (global) GlobalTempView else LocalTempView val tableIdentifier = try { sparkSession.sessionState.sqlParser.parseTableIdentifier(viewName) } catch { case _: ParseException => throw QueryCompilationErrors.invalidViewNameError(viewName) } CreateViewCommand( name = tableIdentifier, userSpecifiedColumns = Nil, comment = None, properties = Map.empty, originalText = None, plan = logicalPlan, allowExisting = false, replace = replace, viewType = viewType, isAnalyzed = true) } /** * Interface for saving the content of the non-streaming Dataset out into external storage. * * @group basic * @since 1.6.0 */ def write: DataFrameWriter[T] = { if (isStreaming) { logicalPlan.failAnalysis( "'write' can not be called on streaming Dataset/DataFrame") } new DataFrameWriter[T](this) } /** * Create a write configuration builder for v2 sources. * * This builder is used to configure and execute write operations. For example, to append to an * existing table, run: * * {{{ * df.writeTo("catalog.db.table").append() * }}} * * This can also be used to create or replace existing tables: * * {{{ * df.writeTo("catalog.db.table").partitionedBy($"col").createOrReplace() * }}} * * @group basic * @since 3.0.0 */ def writeTo(table: String): DataFrameWriterV2[T] = { // TODO: streaming could be adapted to use this interface if (isStreaming) { logicalPlan.failAnalysis( "'writeTo' can not be called on streaming Dataset/DataFrame") } new DataFrameWriterV2[T](table, this) } /** * Interface for saving the content of the streaming Dataset out into external storage. * * @group basic * @since 2.0.0 */ def writeStream: DataStreamWriter[T] = { if (!isStreaming) { logicalPlan.failAnalysis( "'writeStream' can be called only on streaming Dataset/DataFrame") } new DataStreamWriter[T](this) } /** * Returns the content of the Dataset as a Dataset of JSON strings. * @since 2.0.0 */ def toJSON: Dataset[String] = { val rowSchema = this.schema val sessionLocalTimeZone = sparkSession.sessionState.conf.sessionLocalTimeZone mapPartitions { iter => val writer = new CharArrayWriter() // create the Generator without separator inserted between 2 records val gen = new JacksonGenerator(rowSchema, writer, new JSONOptions(Map.empty[String, String], sessionLocalTimeZone)) new Iterator[String] { private val toRow = exprEnc.createSerializer() override def hasNext: Boolean = iter.hasNext override def next(): String = { gen.write(toRow(iter.next())) gen.flush() val json = writer.toString if (hasNext) { writer.reset() } else { gen.close() } json } } } (Encoders.STRING) } /** * Returns a best-effort snapshot of the files that compose this Dataset. This method simply * asks each constituent BaseRelation for its respective files and takes the union of all results. * Depending on the source relations, this may not find all input files. Duplicates are removed. * * @group basic * @since 2.0.0 */ def inputFiles: Array[String] = { val files: Seq[String] = queryExecution.optimizedPlan.collect { case LogicalRelation(fsBasedRelation: FileRelation, _, _, _) => fsBasedRelation.inputFiles case fr: FileRelation => fr.inputFiles case r: HiveTableRelation => r.tableMeta.storage.locationUri.map(_.toString).toArray case DataSourceV2ScanRelation(DataSourceV2Relation(table: FileTable, _, _, _, _), _, _) => table.fileIndex.inputFiles }.flatten files.toSet.toArray } /** * Returns `true` when the logical query plans inside both [[Dataset]]s are equal and * therefore return same results. * * @note The equality comparison here is simplified by tolerating the cosmetic differences * such as attribute names. * @note This API can compare both [[Dataset]]s very fast but can still return `false` on * the [[Dataset]] that return the same results, for instance, from different plans. Such * false negative semantic can be useful when caching as an example. * @since 3.1.0 */ @DeveloperApi def sameSemantics(other: Dataset[T]): Boolean = { queryExecution.analyzed.sameResult(other.queryExecution.analyzed) } /** * Returns a `hashCode` of the logical query plan against this [[Dataset]]. * * @note Unlike the standard `hashCode`, the hash is calculated against the query plan * simplified by tolerating the cosmetic differences such as attribute names. * @since 3.1.0 */ @DeveloperApi def semanticHash(): Int = { queryExecution.analyzed.semanticHash() } //////////////////////////////////////////////////////////////////////////// // For Python API //////////////////////////////////////////////////////////////////////////// /** * It adds a new long column with the name `name` that increases one by one. * This is for 'distributed-sequence' default index in pandas API on Spark. */ private[sql] def withSequenceColumn(name: String) = { Dataset.ofRows( sparkSession, AttachDistributedSequence( AttributeReference(name, LongType, nullable = false)(), logicalPlan)) } /** * Converts a JavaRDD to a PythonRDD. */ private[sql] def javaToPython: JavaRDD[Array[Byte]] = { val structType = schema // capture it for closure val rdd = queryExecution.toRdd.map(EvaluatePython.toJava(_, structType)) EvaluatePython.javaToPython(rdd) } private[sql] def collectToPython(): Array[Any] = { EvaluatePython.registerPicklers() withAction("collectToPython", queryExecution) { plan => val toJava: (Any) => Any = EvaluatePython.toJava(_, schema) val iter: Iterator[Array[Byte]] = new SerDeUtil.AutoBatchedPickler( plan.executeCollect().iterator.map(toJava)) PythonRDD.serveIterator(iter, "serve-DataFrame") } } private[sql] def tailToPython(n: Int): Array[Any] = { EvaluatePython.registerPicklers() withAction("tailToPython", queryExecution) { plan => val toJava: (Any) => Any = EvaluatePython.toJava(_, schema) val iter: Iterator[Array[Byte]] = new SerDeUtil.AutoBatchedPickler( plan.executeTail(n).iterator.map(toJava)) PythonRDD.serveIterator(iter, "serve-DataFrame") } } private[sql] def getRowsToPython( _numRows: Int, truncate: Int): Array[Any] = { EvaluatePython.registerPicklers() val numRows = _numRows.max(0).min(ByteArrayMethods.MAX_ROUNDED_ARRAY_LENGTH - 1) val rows = getRows(numRows, truncate).map(_.toArray).toArray val toJava: (Any) => Any = EvaluatePython.toJava(_, ArrayType(ArrayType(StringType))) val iter: Iterator[Array[Byte]] = new SerDeUtil.AutoBatchedPickler( rows.iterator.map(toJava)) PythonRDD.serveIterator(iter, "serve-GetRows") } /** * Collect a Dataset as Arrow batches and serve stream to SparkR. It sends * arrow batches in an ordered manner with buffering. This is inevitable * due to missing R API that reads batches from socket directly. See ARROW-4512. * Eventually, this code should be deduplicated by `collectAsArrowToPython`. */ private[sql] def collectAsArrowToR(): Array[Any] = { val timeZoneId = sparkSession.sessionState.conf.sessionLocalTimeZone RRDD.serveToStream("serve-Arrow") { outputStream => withAction("collectAsArrowToR", queryExecution) { plan => val buffer = new ByteArrayOutputStream() val out = new DataOutputStream(outputStream) val batchWriter = new ArrowBatchStreamWriter(schema, buffer, timeZoneId) val arrowBatchRdd = toArrowBatchRdd(plan) val numPartitions = arrowBatchRdd.partitions.length // Store collection results for worst case of 1 to N-1 partitions val results = new Array[Array[Array[Byte]]](Math.max(0, numPartitions - 1)) var lastIndex = -1 // index of last partition written // Handler to eagerly write partitions to Python in order def handlePartitionBatches(index: Int, arrowBatches: Array[Array[Byte]]): Unit = { // If result is from next partition in order if (index - 1 == lastIndex) { batchWriter.writeBatches(arrowBatches.iterator) lastIndex += 1 // Write stored partitions that come next in order while (lastIndex < results.length && results(lastIndex) != null) { batchWriter.writeBatches(results(lastIndex).iterator) results(lastIndex) = null lastIndex += 1 } // After last batch, end the stream if (lastIndex == results.length) { batchWriter.end() val batches = buffer.toByteArray out.writeInt(batches.length) out.write(batches) } } else { // Store partitions received out of order results(index - 1) = arrowBatches } } sparkSession.sparkContext.runJob( arrowBatchRdd, (ctx: TaskContext, it: Iterator[Array[Byte]]) => it.toArray, 0 until numPartitions, handlePartitionBatches) } } } /** * Collect a Dataset as Arrow batches and serve stream to PySpark. It sends * arrow batches in an un-ordered manner without buffering, and then batch order * information at the end. The batches should be reordered at Python side. */ private[sql] def collectAsArrowToPython: Array[Any] = { val timeZoneId = sparkSession.sessionState.conf.sessionLocalTimeZone PythonRDD.serveToStream("serve-Arrow") { outputStream => withAction("collectAsArrowToPython", queryExecution) { plan => val out = new DataOutputStream(outputStream) val batchWriter = new ArrowBatchStreamWriter(schema, out, timeZoneId) // Batches ordered by (index of partition, batch index in that partition) tuple val batchOrder = ArrayBuffer.empty[(Int, Int)] // Handler to eagerly write batches to Python as they arrive, un-ordered val handlePartitionBatches = (index: Int, arrowBatches: Array[Array[Byte]]) => if (arrowBatches.nonEmpty) { // Write all batches (can be more than 1) in the partition, store the batch order tuple batchWriter.writeBatches(arrowBatches.iterator) arrowBatches.indices.foreach { partitionBatchIndex => batchOrder.append((index, partitionBatchIndex)) } } Utils.tryWithSafeFinally { val arrowBatchRdd = toArrowBatchRdd(plan) sparkSession.sparkContext.runJob( arrowBatchRdd, (it: Iterator[Array[Byte]]) => it.toArray, handlePartitionBatches) } { // After processing all partitions, end the batch stream batchWriter.end() // Write batch order indices out.writeInt(batchOrder.length) // Sort by (index of partition, batch index in that partition) tuple to get the // overall_batch_index from 0 to N-1 batches, which can be used to put the // transferred batches in the correct order batchOrder.zipWithIndex.sortBy(_._1).foreach { case (_, overallBatchIndex) => out.writeInt(overallBatchIndex) } } } } } private[sql] def toPythonIterator(prefetchPartitions: Boolean = false): Array[Any] = { withNewExecutionId { PythonRDD.toLocalIteratorAndServe(javaToPython.rdd, prefetchPartitions) } } //////////////////////////////////////////////////////////////////////////// // Private Helpers //////////////////////////////////////////////////////////////////////////// /** * Wrap a Dataset action to track all Spark jobs in the body so that we can connect them with * an execution. */ private def withNewExecutionId[U](body: => U): U = { SQLExecution.withNewExecutionId(queryExecution)(body) } /** * Wrap an action of the Dataset's RDD to track all Spark jobs in the body so that we can connect * them with an execution. Before performing the action, the metrics of the executed plan will be * reset. */ private def withNewRDDExecutionId[U](body: => U): U = { SQLExecution.withNewExecutionId(rddQueryExecution) { rddQueryExecution.executedPlan.resetMetrics() body } } /** * Wrap a Dataset action to track the QueryExecution and time cost, then report to the * user-registered callback functions. */ private def withAction[U](name: String, qe: QueryExecution)(action: SparkPlan => U) = { SQLExecution.withNewExecutionId(qe, Some(name)) { qe.executedPlan.resetMetrics() action(qe.executedPlan) } } /** * Collect all elements from a spark plan. */ private def collectFromPlan(plan: SparkPlan): Array[T] = { val fromRow = resolvedEnc.createDeserializer() plan.executeCollect().map(fromRow) } private def sortInternal(global: Boolean, sortExprs: Seq[Column]): Dataset[T] = { val sortOrder: Seq[SortOrder] = sortExprs.map { col => col.expr match { case expr: SortOrder => expr case expr: Expression => SortOrder(expr, Ascending) } } withTypedPlan { Sort(sortOrder, global = global, logicalPlan) } } /** A convenient function to wrap a logical plan and produce a DataFrame. */ @inline private def withPlan(logicalPlan: LogicalPlan): DataFrame = { Dataset.ofRows(sparkSession, logicalPlan) } /** A convenient function to wrap a logical plan and produce a Dataset. */ @inline private def withTypedPlan[U : Encoder](logicalPlan: LogicalPlan): Dataset[U] = { Dataset(sparkSession, logicalPlan) } /** A convenient function to wrap a set based logical plan and produce a Dataset. */ @inline private def withSetOperator[U : Encoder](logicalPlan: LogicalPlan): Dataset[U] = { if (classTag.runtimeClass.isAssignableFrom(classOf[Row])) { // Set operators widen types (change the schema), so we cannot reuse the row encoder. Dataset.ofRows(sparkSession, logicalPlan).asInstanceOf[Dataset[U]] } else { Dataset(sparkSession, logicalPlan) } } /** Convert to an RDD of serialized ArrowRecordBatches. */ private[sql] def toArrowBatchRdd(plan: SparkPlan): RDD[Array[Byte]] = { val schemaCaptured = this.schema val maxRecordsPerBatch = sparkSession.sessionState.conf.arrowMaxRecordsPerBatch val timeZoneId = sparkSession.sessionState.conf.sessionLocalTimeZone plan.execute().mapPartitionsInternal { iter => val context = TaskContext.get() ArrowConverters.toBatchIterator( iter, schemaCaptured, maxRecordsPerBatch, timeZoneId, context) } } // This is only used in tests, for now. private[sql] def toArrowBatchRdd: RDD[Array[Byte]] = { toArrowBatchRdd(queryExecution.executedPlan) } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy