
org.apache.spark.sql.execution.limit.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import org.apache.spark.rdd.{ParallelCollectionRDD, RDD}
import org.apache.spark.serializer.Serializer
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, CodeGenerator, ExprCode, LazilyGeneratedOrdering}
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec
import org.apache.spark.sql.execution.metric.{SQLShuffleReadMetricsReporter, SQLShuffleWriteMetricsReporter}
import org.apache.spark.util.collection.Utils
/**
* The operator takes limited number of elements from its child operator.
*/
trait LimitExec extends UnaryExecNode {
/** Number of element should be taken from child operator */
def limit: Int
}
/**
* Take the first `limit` elements and collect them to a single partition.
*
* This operator will be used when a logical `Limit` operation is the final operator in an
* logical plan, which happens when the user is collecting results back to the driver.
*/
case class CollectLimitExec(limit: Int, child: SparkPlan) extends LimitExec {
override def output: Seq[Attribute] = child.output
override def outputPartitioning: Partitioning = SinglePartition
override def executeCollect(): Array[InternalRow] = child.executeTake(limit)
private val serializer: Serializer = new UnsafeRowSerializer(child.output.size)
private lazy val writeMetrics =
SQLShuffleWriteMetricsReporter.createShuffleWriteMetrics(sparkContext)
private lazy val readMetrics =
SQLShuffleReadMetricsReporter.createShuffleReadMetrics(sparkContext)
override lazy val metrics = readMetrics ++ writeMetrics
protected override def doExecute(): RDD[InternalRow] = {
val childRDD = child.execute()
if (childRDD.getNumPartitions == 0) {
new ParallelCollectionRDD(sparkContext, Seq.empty[InternalRow], 1, Map.empty)
} else {
val singlePartitionRDD = if (childRDD.getNumPartitions == 1) {
childRDD
} else {
val locallyLimited = childRDD.mapPartitionsInternal(_.take(limit))
new ShuffledRowRDD(
ShuffleExchangeExec.prepareShuffleDependency(
locallyLimited,
child.output,
SinglePartition,
serializer,
writeMetrics),
readMetrics)
}
singlePartitionRDD.mapPartitionsInternal(_.take(limit))
}
}
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
/**
* Take the last `limit` elements and collect them to a single partition.
*
* This operator will be used when a logical `Tail` operation is the final operator in an
* logical plan, which happens when the user is collecting results back to the driver.
*/
case class CollectTailExec(limit: Int, child: SparkPlan) extends LimitExec {
override def output: Seq[Attribute] = child.output
override def outputPartitioning: Partitioning = SinglePartition
override def executeCollect(): Array[InternalRow] = child.executeTail(limit)
protected override def doExecute(): RDD[InternalRow] = {
// This is a bit hacky way to avoid a shuffle and scanning all data when it performs
// at `Dataset.tail`.
// Since this execution plan and `execute` are currently called only when
// `Dataset.tail` is invoked, the jobs are always executed when they are supposed to be.
// If we use this execution plan separately like `Dataset.limit` without an actual
// job launch, we might just have to mimic the implementation of `CollectLimitExec`.
sparkContext.parallelize(executeCollect(), numSlices = 1)
}
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
object BaseLimitExec {
private val curId = new java.util.concurrent.atomic.AtomicInteger()
def newLimitCountTerm(): String = {
val id = curId.getAndIncrement()
s"_limit_counter_$id"
}
}
/**
* Helper trait which defines methods that are shared by both
* [[LocalLimitExec]] and [[GlobalLimitExec]].
*/
trait BaseLimitExec extends LimitExec with CodegenSupport {
override def output: Seq[Attribute] = child.output
override def outputPartitioning: Partitioning = child.outputPartitioning
override def outputOrdering: Seq[SortOrder] = child.outputOrdering
protected override def doExecute(): RDD[InternalRow] = child.execute().mapPartitions { iter =>
iter.take(limit)
}
override def inputRDDs(): Seq[RDD[InternalRow]] = {
child.asInstanceOf[CodegenSupport].inputRDDs()
}
// Mark this as empty. This plan doesn't need to evaluate any inputs and can defer the evaluation
// to the parent operator.
override def usedInputs: AttributeSet = AttributeSet.empty
private lazy val countTerm = BaseLimitExec.newLimitCountTerm()
override lazy val limitNotReachedChecks: Seq[String] = {
s"$countTerm < $limit" +: super.limitNotReachedChecks
}
protected override def doProduce(ctx: CodegenContext): String = {
// The counter name is already obtained by the upstream operators via `limitNotReachedChecks`.
// Here we have to inline it to not change its name. This is fine as we won't have many limit
// operators in one query.
//
// Note: create counter variable here instead of `doConsume()` to avoid compilation error,
// because upstream operators might not call `doConsume()` here
// (e.g. `HashJoin.codegenInner()`).
ctx.addMutableState(CodeGenerator.JAVA_INT, countTerm, forceInline = true, useFreshName = false)
child.asInstanceOf[CodegenSupport].produce(ctx, this)
}
override def doConsume(ctx: CodegenContext, input: Seq[ExprCode], row: ExprCode): String = {
s"""
| if ($countTerm < $limit) {
| $countTerm += 1;
| ${consume(ctx, input)}
| }
""".stripMargin
}
}
/**
* Take the first `limit` elements of each child partition, but do not collect or shuffle them.
*/
case class LocalLimitExec(limit: Int, child: SparkPlan) extends BaseLimitExec {
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
/**
* Take the first `limit` elements of the child's single output partition.
*/
case class GlobalLimitExec(limit: Int, child: SparkPlan) extends BaseLimitExec {
override def requiredChildDistribution: List[Distribution] = AllTuples :: Nil
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
/**
* Take the first limit elements as defined by the sortOrder, and do projection if needed.
* This is logically equivalent to having a Limit operator after a [[SortExec]] operator,
* or having a [[ProjectExec]] operator between them.
* This could have been named TopK, but Spark's top operator does the opposite in ordering
* so we name it TakeOrdered to avoid confusion.
*/
case class TakeOrderedAndProjectExec(
limit: Int,
sortOrder: Seq[SortOrder],
projectList: Seq[NamedExpression],
child: SparkPlan) extends UnaryExecNode {
override def output: Seq[Attribute] = {
projectList.map(_.toAttribute)
}
override def executeCollect(): Array[InternalRow] = {
val ord = new LazilyGeneratedOrdering(sortOrder, child.output)
val data = child.execute().map(_.copy()).takeOrdered(limit)(ord)
if (projectList != child.output) {
val proj = UnsafeProjection.create(projectList, child.output)
data.map(r => proj(r).copy())
} else {
data
}
}
private val serializer: Serializer = new UnsafeRowSerializer(child.output.size)
private lazy val writeMetrics =
SQLShuffleWriteMetricsReporter.createShuffleWriteMetrics(sparkContext)
private lazy val readMetrics =
SQLShuffleReadMetricsReporter.createShuffleReadMetrics(sparkContext)
override lazy val metrics = readMetrics ++ writeMetrics
protected override def doExecute(): RDD[InternalRow] = {
val ord = new LazilyGeneratedOrdering(sortOrder, child.output)
val childRDD = child.execute()
if (childRDD.getNumPartitions == 0) {
new ParallelCollectionRDD(sparkContext, Seq.empty[InternalRow], 1, Map.empty)
} else {
val singlePartitionRDD = if (childRDD.getNumPartitions == 1) {
childRDD
} else {
val localTopK = childRDD.mapPartitions { iter =>
Utils.takeOrdered(iter.map(_.copy()), limit)(ord)
}
new ShuffledRowRDD(
ShuffleExchangeExec.prepareShuffleDependency(
localTopK,
child.output,
SinglePartition,
serializer,
writeMetrics),
readMetrics)
}
singlePartitionRDD.mapPartitions { iter =>
val topK = Utils.takeOrdered(iter.map(_.copy()), limit)(ord)
if (projectList != child.output) {
val proj = UnsafeProjection.create(projectList, child.output)
topK.map(r => proj(r))
} else {
topK
}
}
}
}
override def outputOrdering: Seq[SortOrder] = sortOrder
override def outputPartitioning: Partitioning = SinglePartition
override def simpleString(maxFields: Int): String = {
val orderByString = truncatedString(sortOrder, "[", ",", "]", maxFields)
val outputString = truncatedString(output, "[", ",", "]", maxFields)
s"TakeOrderedAndProject(limit=$limit, orderBy=$orderByString, output=$outputString)"
}
override protected def withNewChildInternal(newChild: SparkPlan): SparkPlan =
copy(child = newChild)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy