Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import scala.collection.immutable.IndexedSeq
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.ConfigEntry
import org.apache.spark.sql.{Dataset, SparkSession}
import org.apache.spark.sql.catalyst.catalog.HiveTableRelation
import org.apache.spark.sql.catalyst.expressions.{Attribute, SubqueryExpression}
import org.apache.spark.sql.catalyst.optimizer.EliminateResolvedHint
import org.apache.spark.sql.catalyst.plans.logical.{IgnoreCachedData, LogicalPlan, ResolvedHint, SubqueryAlias, View}
import org.apache.spark.sql.catalyst.trees.TreePattern.PLAN_EXPRESSION
import org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanHelper
import org.apache.spark.sql.execution.columnar.InMemoryRelation
import org.apache.spark.sql.execution.command.CommandUtils
import org.apache.spark.sql.execution.datasources.{FileIndex, HadoopFsRelation, LogicalRelation}
import org.apache.spark.sql.execution.datasources.v2.{DataSourceV2Relation, FileTable}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.storage.StorageLevel.MEMORY_AND_DISK
/** Holds a cached logical plan and its data */
case class CachedData(plan: LogicalPlan, cachedRepresentation: InMemoryRelation)
/**
* Provides support in a SQLContext for caching query results and automatically using these cached
* results when subsequent queries are executed. Data is cached using byte buffers stored in an
* InMemoryRelation. This relation is automatically substituted query plans that return the
* `sameResult` as the originally cached query.
*
* Internal to Spark SQL.
*/
class CacheManager extends Logging with AdaptiveSparkPlanHelper {
/**
* Maintains the list of cached plans as an immutable sequence. Any updates to the list
* should be protected in a "this.synchronized" block which includes the reading of the
* existing value and the update of the cachedData var.
*/
@transient @volatile
private var cachedData = IndexedSeq[CachedData]()
/**
* Configurations needs to be turned off, to avoid regression for cached query, so that the
* outputPartitioning of the underlying cached query plan can be leveraged later.
* Configurations include:
* 1. AQE
* 2. Automatic bucketed table scan
*/
private val forceDisableConfigs: Seq[ConfigEntry[Boolean]] = Seq(
SQLConf.ADAPTIVE_EXECUTION_ENABLED,
SQLConf.AUTO_BUCKETED_SCAN_ENABLED)
/** Clears all cached tables. */
def clearCache(): Unit = this.synchronized {
cachedData.foreach(_.cachedRepresentation.cacheBuilder.clearCache())
cachedData = IndexedSeq[CachedData]()
}
/** Checks if the cache is empty. */
def isEmpty: Boolean = {
cachedData.isEmpty
}
/**
* Caches the data produced by the logical representation of the given [[Dataset]].
* Unlike `RDD.cache()`, the default storage level is set to be `MEMORY_AND_DISK` because
* recomputing the in-memory columnar representation of the underlying table is expensive.
*/
def cacheQuery(
query: Dataset[_],
tableName: Option[String] = None,
storageLevel: StorageLevel = MEMORY_AND_DISK): Unit = {
cacheQuery(query.sparkSession, query.queryExecution.normalized, tableName, storageLevel)
}
/**
* Caches the data produced by the given [[LogicalPlan]].
* Unlike `RDD.cache()`, the default storage level is set to be `MEMORY_AND_DISK` because
* recomputing the in-memory columnar representation of the underlying table is expensive.
*/
def cacheQuery(
spark: SparkSession,
planToCache: LogicalPlan,
tableName: Option[String]): Unit = {
cacheQuery(spark, planToCache, tableName, MEMORY_AND_DISK)
}
/**
* Caches the data produced by the given [[LogicalPlan]].
*/
def cacheQuery(
spark: SparkSession,
planToCache: LogicalPlan,
tableName: Option[String],
storageLevel: StorageLevel): Unit = {
if (lookupCachedData(planToCache).nonEmpty) {
logWarning("Asked to cache already cached data.")
} else {
val sessionWithConfigsOff = getOrCloneSessionWithConfigsOff(spark)
val inMemoryRelation = sessionWithConfigsOff.withActive {
val qe = sessionWithConfigsOff.sessionState.executePlan(planToCache)
InMemoryRelation(
storageLevel,
qe,
tableName)
}
this.synchronized {
if (lookupCachedData(planToCache).nonEmpty) {
logWarning("Data has already been cached.")
} else {
cachedData = CachedData(planToCache, inMemoryRelation) +: cachedData
}
}
}
}
/**
* Un-cache the given plan or all the cache entries that refer to the given plan.
* @param query The [[Dataset]] to be un-cached.
* @param cascade If true, un-cache all the cache entries that refer to the given
* [[Dataset]]; otherwise un-cache the given [[Dataset]] only.
*/
def uncacheQuery(
query: Dataset[_],
cascade: Boolean): Unit = {
uncacheQuery(query.sparkSession, query.queryExecution.normalized, cascade)
}
/**
* Un-cache the given plan or all the cache entries that refer to the given plan.
* @param spark The Spark session.
* @param plan The plan to be un-cached.
* @param cascade If true, un-cache all the cache entries that refer to the given
* plan; otherwise un-cache the given plan only.
* @param blocking Whether to block until all blocks are deleted.
*/
def uncacheQuery(
spark: SparkSession,
plan: LogicalPlan,
cascade: Boolean,
blocking: Boolean = false): Unit = {
uncacheQuery(spark, _.sameResult(plan), cascade, blocking)
}
def uncacheTableOrView(spark: SparkSession, name: Seq[String], cascade: Boolean): Unit = {
uncacheQuery(
spark,
isMatchedTableOrView(_, name, spark.sessionState.conf),
cascade,
blocking = false)
}
private def isMatchedTableOrView(plan: LogicalPlan, name: Seq[String], conf: SQLConf): Boolean = {
def isSameName(nameInCache: Seq[String]): Boolean = {
nameInCache.length == name.length && nameInCache.zip(name).forall(conf.resolver.tupled)
}
plan match {
case SubqueryAlias(ident, LogicalRelation(_, _, Some(catalogTable), _)) =>
val v1Ident = catalogTable.identifier
isSameName(ident.qualifier :+ ident.name) &&
isSameName(v1Ident.catalog.toSeq ++ v1Ident.database :+ v1Ident.table)
case SubqueryAlias(ident, DataSourceV2Relation(_, _, Some(catalog), Some(v2Ident), _)) =>
isSameName(ident.qualifier :+ ident.name) &&
isSameName(catalog.name() +: v2Ident.namespace() :+ v2Ident.name())
case SubqueryAlias(ident, View(catalogTable, _, _)) =>
val v1Ident = catalogTable.identifier
isSameName(ident.qualifier :+ ident.name) &&
isSameName(v1Ident.catalog.toSeq ++ v1Ident.database :+ v1Ident.table)
case SubqueryAlias(ident, HiveTableRelation(catalogTable, _, _, _, _)) =>
val v1Ident = catalogTable.identifier
isSameName(ident.qualifier :+ ident.name) &&
isSameName(v1Ident.catalog.toSeq ++ v1Ident.database :+ v1Ident.table)
case _ => false
}
}
def uncacheQuery(
spark: SparkSession,
isMatchedPlan: LogicalPlan => Boolean,
cascade: Boolean,
blocking: Boolean): Unit = {
val shouldRemove: LogicalPlan => Boolean =
if (cascade) {
_.exists(isMatchedPlan)
} else {
isMatchedPlan
}
val plansToUncache = cachedData.filter(cd => shouldRemove(cd.plan))
this.synchronized {
cachedData = cachedData.filterNot(cd => plansToUncache.exists(_ eq cd))
}
plansToUncache.foreach { _.cachedRepresentation.cacheBuilder.clearCache(blocking) }
// Re-compile dependent cached queries after removing the cached query.
if (!cascade) {
recacheByCondition(spark, cd => {
// If the cache buffer has already been loaded, we don't need to recompile the cached plan,
// as it does not rely on the plan that has been uncached anymore, it will just produce
// data from the cache buffer.
// Note that the `CachedRDDBuilder.isCachedColumnBuffersLoaded` call is a non-locking
// status test and may not return the most accurate cache buffer state. So the worse case
// scenario can be:
// 1) The buffer has been loaded, but `isCachedColumnBuffersLoaded` returns false, then we
// will clear the buffer and re-compiled the plan. It is inefficient but doesn't affect
// correctness.
// 2) The buffer has been cleared, but `isCachedColumnBuffersLoaded` returns true, then we
// will keep it as it is. It means the physical plan has been re-compiled already in the
// other thread.
val cacheAlreadyLoaded = cd.cachedRepresentation.cacheBuilder.isCachedColumnBuffersLoaded
cd.plan.exists(isMatchedPlan) && !cacheAlreadyLoaded
})
}
}
// Analyzes column statistics in the given cache data
private[sql] def analyzeColumnCacheQuery(
sparkSession: SparkSession,
cachedData: CachedData,
column: Seq[Attribute]): Unit = {
val relation = cachedData.cachedRepresentation
val (rowCount, newColStats) =
CommandUtils.computeColumnStats(sparkSession, relation, column)
relation.updateStats(rowCount, newColStats)
}
/**
* Tries to re-cache all the cache entries that refer to the given plan.
*/
def recacheByPlan(spark: SparkSession, plan: LogicalPlan): Unit = {
recacheByCondition(spark, _.plan.exists(_.sameResult(plan)))
}
/**
* Re-caches all the cache entries that satisfies the given `condition`.
*/
private def recacheByCondition(
spark: SparkSession,
condition: CachedData => Boolean): Unit = {
val needToRecache = cachedData.filter(condition)
this.synchronized {
// Remove the cache entry before creating a new ones.
cachedData = cachedData.filterNot(cd => needToRecache.exists(_ eq cd))
}
needToRecache.foreach { cd =>
cd.cachedRepresentation.cacheBuilder.clearCache()
val sessionWithConfigsOff = getOrCloneSessionWithConfigsOff(spark)
val newCache = sessionWithConfigsOff.withActive {
val qe = sessionWithConfigsOff.sessionState.executePlan(cd.plan)
InMemoryRelation(cd.cachedRepresentation.cacheBuilder, qe)
}
val recomputedPlan = cd.copy(cachedRepresentation = newCache)
this.synchronized {
if (lookupCachedData(recomputedPlan.plan).nonEmpty) {
logWarning("While recaching, data was already added to cache.")
} else {
cachedData = recomputedPlan +: cachedData
}
}
}
}
/** Optionally returns cached data for the given [[Dataset]] */
def lookupCachedData(query: Dataset[_]): Option[CachedData] = {
lookupCachedData(query.queryExecution.normalized)
}
/** Optionally returns cached data for the given [[LogicalPlan]]. */
def lookupCachedData(plan: LogicalPlan): Option[CachedData] = {
cachedData.find(cd => plan.sameResult(cd.plan))
}
/** Replaces segments of the given logical plan with cached versions where possible. */
def useCachedData(plan: LogicalPlan): LogicalPlan = {
val newPlan = plan transformDown {
case command: IgnoreCachedData => command
case currentFragment =>
lookupCachedData(currentFragment).map { cached =>
// After cache lookup, we should still keep the hints from the input plan.
val hints = EliminateResolvedHint.extractHintsFromPlan(currentFragment)._2
val cachedPlan = cached.cachedRepresentation.withOutput(currentFragment.output)
// The returned hint list is in top-down order, we should create the hint nodes from
// right to left.
hints.foldRight[LogicalPlan](cachedPlan) { case (hint, p) =>
ResolvedHint(p, hint)
}
}.getOrElse(currentFragment)
}
newPlan.transformAllExpressionsWithPruning(_.containsPattern(PLAN_EXPRESSION)) {
case s: SubqueryExpression => s.withNewPlan(useCachedData(s.plan))
}
}
/**
* Tries to re-cache all the cache entries that contain `resourcePath` in one or more
* `HadoopFsRelation` node(s) as part of its logical plan.
*/
def recacheByPath(spark: SparkSession, resourcePath: String): Unit = {
val path = new Path(resourcePath)
val fs = path.getFileSystem(spark.sessionState.newHadoopConf())
recacheByPath(spark, path, fs)
}
/**
* Tries to re-cache all the cache entries that contain `resourcePath` in one or more
* `HadoopFsRelation` node(s) as part of its logical plan.
*/
def recacheByPath(spark: SparkSession, resourcePath: Path, fs: FileSystem): Unit = {
val qualifiedPath = fs.makeQualified(resourcePath)
recacheByCondition(spark, _.plan.exists(lookupAndRefresh(_, fs, qualifiedPath)))
}
/**
* Traverses a given `plan` and searches for the occurrences of `qualifiedPath` in the
* [[org.apache.spark.sql.execution.datasources.FileIndex]] of any [[HadoopFsRelation]] nodes
* in the plan. If found, we refresh the metadata and return true. Otherwise, this method returns
* false.
*/
private def lookupAndRefresh(plan: LogicalPlan, fs: FileSystem, qualifiedPath: Path): Boolean = {
plan match {
case lr: LogicalRelation => lr.relation match {
case hr: HadoopFsRelation =>
refreshFileIndexIfNecessary(hr.location, fs, qualifiedPath)
case _ => false
}
case DataSourceV2Relation(fileTable: FileTable, _, _, _, _) =>
refreshFileIndexIfNecessary(fileTable.fileIndex, fs, qualifiedPath)
case _ => false
}
}
/**
* Refresh the given [[FileIndex]] if any of its root paths is a subdirectory
* of the `qualifiedPath`.
* @return whether the [[FileIndex]] is refreshed.
*/
private def refreshFileIndexIfNecessary(
fileIndex: FileIndex,
fs: FileSystem,
qualifiedPath: Path): Boolean = {
val needToRefresh = fileIndex.rootPaths
.map(_.makeQualified(fs.getUri, fs.getWorkingDirectory))
.exists(isSubDir(qualifiedPath, _))
if (needToRefresh) fileIndex.refresh()
needToRefresh
}
/**
* Checks if the given child path is a sub-directory of the given parent path.
* @param qualifiedPathChild:
* Fully qualified child path
* @param qualifiedPathParent:
* Fully qualified parent path.
* @return
* True if the child path is a sub-directory of the given parent path. Otherwise, false.
*/
def isSubDir(qualifiedPathParent: Path, qualifiedPathChild: Path): Boolean = {
Iterator
.iterate(qualifiedPathChild)(_.getParent)
.takeWhile(_ != null)
.exists(_.equals(qualifiedPathParent))
}
/**
* If `CAN_CHANGE_CACHED_PLAN_OUTPUT_PARTITIONING` is enabled, return the session with disabled
* `AUTO_BUCKETED_SCAN_ENABLED`.
* If `CAN_CHANGE_CACHED_PLAN_OUTPUT_PARTITIONING` is disabled, return the session with disabled
* `AUTO_BUCKETED_SCAN_ENABLED` and `ADAPTIVE_EXECUTION_ENABLED`.
*/
private def getOrCloneSessionWithConfigsOff(session: SparkSession): SparkSession = {
if (session.conf.get(SQLConf.CAN_CHANGE_CACHED_PLAN_OUTPUT_PARTITIONING)) {
// Bucketed scan only has one time overhead but can have multi-times benefits in cache,
// so we always do bucketed scan in a cached plan.
SparkSession.getOrCloneSessionWithConfigsOff(
session, SQLConf.AUTO_BUCKETED_SCAN_ENABLED :: Nil)
} else {
SparkSession.getOrCloneSessionWithConfigsOff(session, forceDisableConfigs)
}
}
}