Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution
import java.util.Arrays
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.shuffle.sort.SortShuffleManager
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.execution.metric.{SQLMetric, SQLShuffleReadMetricsReporter}
import org.apache.spark.sql.internal.SQLConf
sealed trait ShufflePartitionSpec
// A partition that reads data of one or more reducers, from `startReducerIndex` (inclusive) to
// `endReducerIndex` (exclusive).
case class CoalescedPartitionSpec(
startReducerIndex: Int,
endReducerIndex: Int,
@transient dataSize: Option[Long] = None) extends ShufflePartitionSpec
object CoalescedPartitionSpec {
def apply(startReducerIndex: Int,
endReducerIndex: Int,
dataSize: Long): CoalescedPartitionSpec = {
CoalescedPartitionSpec(startReducerIndex, endReducerIndex, Some(dataSize))
}
}
// A partition that reads partial data of one reducer, from `startMapIndex` (inclusive) to
// `endMapIndex` (exclusive).
case class PartialReducerPartitionSpec(
reducerIndex: Int,
startMapIndex: Int,
endMapIndex: Int,
@transient dataSize: Long) extends ShufflePartitionSpec
// A partition that reads partial data of one mapper, from `startReducerIndex` (inclusive) to
// `endReducerIndex` (exclusive).
case class PartialMapperPartitionSpec(
mapIndex: Int,
startReducerIndex: Int,
endReducerIndex: Int) extends ShufflePartitionSpec
// TODO(SPARK-36234): Consider mapper location and shuffle block size when coalescing mappers
case class CoalescedMapperPartitionSpec(
startMapIndex: Int,
endMapIndex: Int,
numReducers: Int) extends ShufflePartitionSpec
/**
* The [[Partition]] used by [[ShuffledRowRDD]].
*/
private final case class ShuffledRowRDDPartition(
index: Int, spec: ShufflePartitionSpec) extends Partition
/**
* A Partitioner that might group together one or more partitions from the parent.
*
* @param parent a parent partitioner
* @param partitionStartIndices indices of partitions in parent that should create new partitions
* in child (this should be an array of increasing partition IDs). For example, if we have a
* parent with 5 partitions, and partitionStartIndices is [0, 2, 4], we get three output
* partitions, corresponding to partition ranges [0, 1], [2, 3] and [4] of the parent partitioner.
*/
class CoalescedPartitioner(val parent: Partitioner, val partitionStartIndices: Array[Int])
extends Partitioner {
@transient private lazy val parentPartitionMapping: Array[Int] = {
val n = parent.numPartitions
val result = new Array[Int](n)
for (i <- partitionStartIndices.indices) {
val start = partitionStartIndices(i)
val end = if (i < partitionStartIndices.length - 1) partitionStartIndices(i + 1) else n
for (j <- start until end) {
result(j) = i
}
}
result
}
override def numPartitions: Int = partitionStartIndices.length
override def getPartition(key: Any): Int = {
parentPartitionMapping(parent.getPartition(key))
}
override def equals(other: Any): Boolean = other match {
case c: CoalescedPartitioner =>
c.parent == parent && Arrays.equals(c.partitionStartIndices, partitionStartIndices)
case _ =>
false
}
override def hashCode(): Int = 31 * parent.hashCode() + Arrays.hashCode(partitionStartIndices)
}
/**
* This is a specialized version of [[org.apache.spark.rdd.ShuffledRDD]] that is optimized for
* shuffling rows instead of Java key-value pairs. Note that something like this should eventually
* be implemented in Spark core, but that is blocked by some more general refactorings to shuffle
* interfaces / internals.
*
* This RDD takes a [[ShuffleDependency]] (`dependency`),
* and an array of [[ShufflePartitionSpec]] as input arguments.
*
* The `dependency` has the parent RDD of this RDD, which represents the dataset before shuffle
* (i.e. map output). Elements of this RDD are (partitionId, Row) pairs.
* Partition ids should be in the range [0, numPartitions - 1].
* `dependency.partitioner` is the original partitioner used to partition
* map output, and `dependency.partitioner.numPartitions` is the number of pre-shuffle partitions
* (i.e. the number of partitions of the map output).
*/
class ShuffledRowRDD(
var dependency: ShuffleDependency[Int, InternalRow, InternalRow],
metrics: Map[String, SQLMetric],
partitionSpecs: Array[ShufflePartitionSpec])
extends RDD[InternalRow](dependency.rdd.context, Nil) {
def this(
dependency: ShuffleDependency[Int, InternalRow, InternalRow],
metrics: Map[String, SQLMetric]) = {
this(dependency, metrics,
Array.tabulate(dependency.partitioner.numPartitions)(i => CoalescedPartitionSpec(i, i + 1)))
}
dependency.rdd.context.setLocalProperty(
SortShuffleManager.FETCH_SHUFFLE_BLOCKS_IN_BATCH_ENABLED_KEY,
SQLConf.get.fetchShuffleBlocksInBatch.toString)
override def getDependencies: Seq[Dependency[_]] = List(dependency)
override val partitioner: Option[Partitioner] =
if (partitionSpecs.forall(_.isInstanceOf[CoalescedPartitionSpec])) {
val indices = partitionSpecs.map(_.asInstanceOf[CoalescedPartitionSpec].startReducerIndex)
// TODO this check is based on assumptions of callers' behavior but is sufficient for now.
if (indices.toSet.size == partitionSpecs.length) {
Some(new CoalescedPartitioner(dependency.partitioner, indices))
} else {
None
}
} else {
None
}
override def getPartitions: Array[Partition] = {
Array.tabulate[Partition](partitionSpecs.length) { i =>
ShuffledRowRDDPartition(i, partitionSpecs(i))
}
}
override def getPreferredLocations(partition: Partition): Seq[String] = {
val tracker = SparkEnv.get.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster]
partition.asInstanceOf[ShuffledRowRDDPartition].spec match {
case CoalescedPartitionSpec(startReducerIndex, endReducerIndex, _) =>
// TODO order by partition size.
startReducerIndex.until(endReducerIndex).flatMap { reducerIndex =>
tracker.getPreferredLocationsForShuffle(dependency, reducerIndex)
}
case PartialReducerPartitionSpec(_, startMapIndex, endMapIndex, _) =>
tracker.getMapLocation(dependency, startMapIndex, endMapIndex)
case PartialMapperPartitionSpec(mapIndex, _, _) =>
tracker.getMapLocation(dependency, mapIndex, mapIndex + 1)
case CoalescedMapperPartitionSpec(startMapIndex, endMapIndex, numReducers) =>
tracker.getMapLocation(dependency, startMapIndex, endMapIndex)
}
}
override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {
val tempMetrics = context.taskMetrics().createTempShuffleReadMetrics()
// `SQLShuffleReadMetricsReporter` will update its own metrics for SQL exchange operator,
// as well as the `tempMetrics` for basic shuffle metrics.
val sqlMetricsReporter = new SQLShuffleReadMetricsReporter(tempMetrics, metrics)
val reader = split.asInstanceOf[ShuffledRowRDDPartition].spec match {
case CoalescedPartitionSpec(startReducerIndex, endReducerIndex, _) =>
SparkEnv.get.shuffleManager.getReader(
dependency.shuffleHandle,
startReducerIndex,
endReducerIndex,
context,
sqlMetricsReporter)
case PartialReducerPartitionSpec(reducerIndex, startMapIndex, endMapIndex, _) =>
SparkEnv.get.shuffleManager.getReader(
dependency.shuffleHandle,
startMapIndex,
endMapIndex,
reducerIndex,
reducerIndex + 1,
context,
sqlMetricsReporter)
case PartialMapperPartitionSpec(mapIndex, startReducerIndex, endReducerIndex) =>
SparkEnv.get.shuffleManager.getReader(
dependency.shuffleHandle,
mapIndex,
mapIndex + 1,
startReducerIndex,
endReducerIndex,
context,
sqlMetricsReporter)
case CoalescedMapperPartitionSpec(startMapIndex, endMapIndex, numReducers) =>
SparkEnv.get.shuffleManager.getReader(
dependency.shuffleHandle,
startMapIndex,
endMapIndex,
0,
numReducers,
context,
sqlMetricsReporter)
}
reader.read().asInstanceOf[Iterator[Product2[Int, InternalRow]]].map(_._2)
}
override def clearDependencies(): Unit = {
super.clearDependencies()
dependency = null
}
}