org.apache.spark.streaming.dstream.MapWithStateDStream.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.streaming.dstream
import scala.reflect.ClassTag
import org.apache.spark._
import org.apache.spark.annotation.Experimental
import org.apache.spark.rdd.{EmptyRDD, RDD}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.dstream.InternalMapWithStateDStream._
import org.apache.spark.streaming.rdd.{MapWithStateRDD, MapWithStateRDDRecord}
/**
* :: Experimental ::
* DStream representing the stream of data generated by `mapWithState` operation on a
* [[org.apache.spark.streaming.dstream.PairDStreamFunctions pair DStream]].
* Additionally, it also gives access to the stream of state snapshots, that is, the state data of
* all keys after a batch has updated them.
*
* @tparam KeyType Class of the key
* @tparam ValueType Class of the value
* @tparam StateType Class of the state data
* @tparam MappedType Class of the mapped data
*/
@Experimental
sealed abstract class MapWithStateDStream[KeyType, ValueType, StateType, MappedType: ClassTag](
ssc: StreamingContext) extends DStream[MappedType](ssc) {
/** Return a pair DStream where each RDD is the snapshot of the state of all the keys. */
def stateSnapshots(): DStream[(KeyType, StateType)]
}
/** Internal implementation of the [[MapWithStateDStream]] */
private[streaming] class MapWithStateDStreamImpl[
KeyType: ClassTag, ValueType: ClassTag, StateType: ClassTag, MappedType: ClassTag](
dataStream: DStream[(KeyType, ValueType)],
spec: StateSpecImpl[KeyType, ValueType, StateType, MappedType])
extends MapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream.context) {
private val internalStream =
new InternalMapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream, spec)
override def slideDuration: Duration = internalStream.slideDuration
override def dependencies: List[DStream[_]] = List(internalStream)
override def compute(validTime: Time): Option[RDD[MappedType]] = {
internalStream.getOrCompute(validTime).map { _.flatMap[MappedType] { _.mappedData } }
}
/**
* Forward the checkpoint interval to the internal DStream that computes the state maps. This
* to make sure that this DStream does not get checkpointed, only the internal stream.
*/
override def checkpoint(checkpointInterval: Duration): DStream[MappedType] = {
internalStream.checkpoint(checkpointInterval)
this
}
/** Return a pair DStream where each RDD is the snapshot of the state of all the keys. */
def stateSnapshots(): DStream[(KeyType, StateType)] = {
internalStream.flatMap {
_.stateMap.getAll().map { case (k, s, _) => (k, s) }.toTraversable }
}
def keyClass: Class[_] = implicitly[ClassTag[KeyType]].runtimeClass
def valueClass: Class[_] = implicitly[ClassTag[ValueType]].runtimeClass
def stateClass: Class[_] = implicitly[ClassTag[StateType]].runtimeClass
def mappedClass: Class[_] = implicitly[ClassTag[MappedType]].runtimeClass
}
/**
* A DStream that allows per-key state to be maintained, and arbitrary records to be generated
* based on updates to the state. This is the main DStream that implements the `mapWithState`
* operation on DStreams.
*
* @param parent Parent (key, value) stream that is the source
* @param spec Specifications of the mapWithState operation
* @tparam K Key type
* @tparam V Value type
* @tparam S Type of the state maintained
* @tparam E Type of the mapped data
*/
private[streaming]
class InternalMapWithStateDStream[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag](
parent: DStream[(K, V)], spec: StateSpecImpl[K, V, S, E])
extends DStream[MapWithStateRDDRecord[K, S, E]](parent.context) {
persist(StorageLevel.MEMORY_ONLY)
private val partitioner = spec.getPartitioner().getOrElse(
new HashPartitioner(ssc.sc.defaultParallelism))
private val mappingFunction = spec.getFunction()
override def slideDuration: Duration = parent.slideDuration
override def dependencies: List[DStream[_]] = List(parent)
/** Enable automatic checkpointing */
override val mustCheckpoint = true
/** Override the default checkpoint duration */
override def initialize(time: Time): Unit = {
if (checkpointDuration == null) {
checkpointDuration = slideDuration * DEFAULT_CHECKPOINT_DURATION_MULTIPLIER
}
super.initialize(time)
}
/** Method that generates a RDD for the given time */
override def compute(validTime: Time): Option[RDD[MapWithStateRDDRecord[K, S, E]]] = {
// Get the previous state or create a new empty state RDD
val prevStateRDD = getOrCompute(validTime - slideDuration) match {
case Some(rdd) =>
if (rdd.partitioner != Some(partitioner)) {
// If the RDD is not partitioned the right way, let us repartition it using the
// partition index as the key. This is to ensure that state RDD is always partitioned
// before creating another state RDD using it
MapWithStateRDD.createFromRDD[K, V, S, E](
rdd.flatMap { _.stateMap.getAll() }, partitioner, validTime)
} else {
rdd
}
case None =>
MapWithStateRDD.createFromPairRDD[K, V, S, E](
spec.getInitialStateRDD().getOrElse(new EmptyRDD[(K, S)](ssc.sparkContext)),
partitioner,
validTime
)
}
// Compute the new state RDD with previous state RDD and partitioned data RDD
// Even if there is no data RDD, use an empty one to create a new state RDD
val dataRDD = parent.getOrCompute(validTime).getOrElse {
context.sparkContext.emptyRDD[(K, V)]
}
val partitionedDataRDD = dataRDD.partitionBy(partitioner)
val timeoutThresholdTime = spec.getTimeoutInterval().map { interval =>
(validTime - interval).milliseconds
}
Some(new MapWithStateRDD(
prevStateRDD, partitionedDataRDD, mappingFunction, validTime, timeoutThresholdTime))
}
}
private[streaming] object InternalMapWithStateDStream {
private val DEFAULT_CHECKPOINT_DURATION_MULTIPLIER = 10
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy