
org.apache.spark.deploy.yarn.YarnSparkHadoopUtil.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.deploy.yarn
import java.io.File
import java.nio.charset.StandardCharsets.UTF_8
import java.util.regex.Matcher
import java.util.regex.Pattern
import scala.collection.mutable.HashMap
import scala.reflect.runtime._
import scala.util.Try
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.hdfs.security.token.delegation.DelegationTokenIdentifier
import org.apache.hadoop.io.Text
import org.apache.hadoop.mapred.{Master, JobConf}
import org.apache.hadoop.security.Credentials
import org.apache.hadoop.security.UserGroupInformation
import org.apache.hadoop.security.token.Token
import org.apache.hadoop.yarn.conf.YarnConfiguration
import org.apache.hadoop.yarn.api.ApplicationConstants
import org.apache.hadoop.yarn.api.ApplicationConstants.Environment
import org.apache.hadoop.yarn.api.records.{ApplicationAccessType, ContainerId, Priority}
import org.apache.hadoop.yarn.util.ConverterUtils
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.launcher.YarnCommandBuilderUtils
import org.apache.spark.{SecurityManager, SparkConf, SparkException}
import org.apache.spark.util.Utils
/**
* Contains util methods to interact with Hadoop from spark.
*/
class YarnSparkHadoopUtil extends SparkHadoopUtil {
private var tokenRenewer: Option[ExecutorDelegationTokenUpdater] = None
override def transferCredentials(source: UserGroupInformation, dest: UserGroupInformation) {
dest.addCredentials(source.getCredentials())
}
// Note that all params which start with SPARK are propagated all the way through, so if in yarn
// mode, this MUST be set to true.
override def isYarnMode(): Boolean = { true }
// Return an appropriate (subclass) of Configuration. Creating a config initializes some Hadoop
// subsystems. Always create a new config, dont reuse yarnConf.
override def newConfiguration(conf: SparkConf): Configuration =
new YarnConfiguration(super.newConfiguration(conf))
// Add any user credentials to the job conf which are necessary for running on a secure Hadoop
// cluster
override def addCredentials(conf: JobConf) {
val jobCreds = conf.getCredentials()
jobCreds.mergeAll(UserGroupInformation.getCurrentUser().getCredentials())
}
override def getCurrentUserCredentials(): Credentials = {
UserGroupInformation.getCurrentUser().getCredentials()
}
override def addCurrentUserCredentials(creds: Credentials) {
UserGroupInformation.getCurrentUser().addCredentials(creds)
}
override def addSecretKeyToUserCredentials(key: String, secret: String) {
val creds = new Credentials()
creds.addSecretKey(new Text(key), secret.getBytes(UTF_8))
addCurrentUserCredentials(creds)
}
override def getSecretKeyFromUserCredentials(key: String): Array[Byte] = {
val credentials = getCurrentUserCredentials()
if (credentials != null) credentials.getSecretKey(new Text(key)) else null
}
/**
* Get the list of namenodes the user may access.
*/
def getNameNodesToAccess(sparkConf: SparkConf): Set[Path] = {
sparkConf.get("spark.yarn.access.namenodes", "")
.split(",")
.map(_.trim())
.filter(!_.isEmpty)
.map(new Path(_))
.toSet
}
def getTokenRenewer(conf: Configuration): String = {
val delegTokenRenewer = Master.getMasterPrincipal(conf)
logDebug("delegation token renewer is: " + delegTokenRenewer)
if (delegTokenRenewer == null || delegTokenRenewer.length() == 0) {
val errorMessage = "Can't get Master Kerberos principal for use as renewer"
logError(errorMessage)
throw new SparkException(errorMessage)
}
delegTokenRenewer
}
/**
* Obtains tokens for the namenodes passed in and adds them to the credentials.
*/
def obtainTokensForNamenodes(
paths: Set[Path],
conf: Configuration,
creds: Credentials,
renewer: Option[String] = None
): Unit = {
if (UserGroupInformation.isSecurityEnabled()) {
val delegTokenRenewer = renewer.getOrElse(getTokenRenewer(conf))
paths.foreach { dst =>
val dstFs = dst.getFileSystem(conf)
logInfo("getting token for namenode: " + dst)
dstFs.addDelegationTokens(delegTokenRenewer, creds)
}
}
}
private[spark] override def startExecutorDelegationTokenRenewer(sparkConf: SparkConf): Unit = {
tokenRenewer = Some(new ExecutorDelegationTokenUpdater(sparkConf, conf))
tokenRenewer.get.updateCredentialsIfRequired()
}
private[spark] override def stopExecutorDelegationTokenRenewer(): Unit = {
tokenRenewer.foreach(_.stop())
}
private[spark] def getContainerId: ContainerId = {
val containerIdString = System.getenv(ApplicationConstants.Environment.CONTAINER_ID.name())
ConverterUtils.toContainerId(containerIdString)
}
/**
* Obtains token for the Hive metastore, using the current user as the principal.
* Some exceptions are caught and downgraded to a log message.
* @param conf hadoop configuration; the Hive configuration will be based on this
* @return a token, or `None` if there's no need for a token (no metastore URI or principal
* in the config), or if a binding exception was caught and downgraded.
*/
def obtainTokenForHiveMetastore(conf: Configuration): Option[Token[DelegationTokenIdentifier]] = {
try {
obtainTokenForHiveMetastoreInner(conf, UserGroupInformation.getCurrentUser().getUserName)
} catch {
case e: ClassNotFoundException =>
logInfo(s"Hive class not found $e")
logDebug("Hive class not found", e)
None
}
}
/**
* Inner routine to obtains token for the Hive metastore; exceptions are raised on any problem.
* @param conf hadoop configuration; the Hive configuration will be based on this.
* @param username the username of the principal requesting the delegating token.
* @return a delegation token
*/
private[yarn] def obtainTokenForHiveMetastoreInner(conf: Configuration,
username: String): Option[Token[DelegationTokenIdentifier]] = {
val mirror = universe.runtimeMirror(Utils.getContextOrSparkClassLoader)
// the hive configuration class is a subclass of Hadoop Configuration, so can be cast down
// to a Configuration and used without reflection
val hiveConfClass = mirror.classLoader.loadClass("org.apache.hadoop.hive.conf.HiveConf")
// using the (Configuration, Class) constructor allows the current configuratin to be included
// in the hive config.
val ctor = hiveConfClass.getDeclaredConstructor(classOf[Configuration],
classOf[Object].getClass)
val hiveConf = ctor.newInstance(conf, hiveConfClass).asInstanceOf[Configuration]
val metastoreUri = hiveConf.getTrimmed("hive.metastore.uris", "")
// Check for local metastore
if (metastoreUri.nonEmpty) {
require(username.nonEmpty, "Username undefined")
val principalKey = "hive.metastore.kerberos.principal"
val principal = hiveConf.getTrimmed(principalKey, "")
require(principal.nonEmpty, "Hive principal $principalKey undefined")
logDebug(s"Getting Hive delegation token for $username against $principal at $metastoreUri")
val hiveClass = mirror.classLoader.loadClass("org.apache.hadoop.hive.ql.metadata.Hive")
val closeCurrent = hiveClass.getMethod("closeCurrent")
try {
// get all the instance methods before invoking any
val getDelegationToken = hiveClass.getMethod("getDelegationToken",
classOf[String], classOf[String])
val getHive = hiveClass.getMethod("get", hiveConfClass)
// invoke
val hive = getHive.invoke(null, hiveConf)
val tokenStr = getDelegationToken.invoke(hive, username, principal).asInstanceOf[String]
val hive2Token = new Token[DelegationTokenIdentifier]()
hive2Token.decodeFromUrlString(tokenStr)
Some(hive2Token)
} finally {
Utils.tryLogNonFatalError {
closeCurrent.invoke(null)
}
}
} else {
logDebug("HiveMetaStore configured in localmode")
None
}
}
}
object YarnSparkHadoopUtil {
// Additional memory overhead
// 10% was arrived at experimentally. In the interest of minimizing memory waste while covering
// the common cases. Memory overhead tends to grow with container size.
val MEMORY_OVERHEAD_FACTOR = 0.10
val MEMORY_OVERHEAD_MIN = 384
val ANY_HOST = "*"
val DEFAULT_NUMBER_EXECUTORS = 2
// All RM requests are issued with same priority : we do not (yet) have any distinction between
// request types (like map/reduce in hadoop for example)
val RM_REQUEST_PRIORITY = Priority.newInstance(1)
def get: YarnSparkHadoopUtil = {
val yarnMode = java.lang.Boolean.valueOf(
System.getProperty("SPARK_YARN_MODE", System.getenv("SPARK_YARN_MODE")))
if (!yarnMode) {
throw new SparkException("YarnSparkHadoopUtil is not available in non-YARN mode!")
}
SparkHadoopUtil.get.asInstanceOf[YarnSparkHadoopUtil]
}
/**
* Add a path variable to the given environment map.
* If the map already contains this key, append the value to the existing value instead.
*/
def addPathToEnvironment(env: HashMap[String, String], key: String, value: String): Unit = {
val newValue = if (env.contains(key)) { env(key) + getClassPathSeparator + value } else value
env.put(key, newValue)
}
/**
* Set zero or more environment variables specified by the given input string.
* The input string is expected to take the form "KEY1=VAL1,KEY2=VAL2,KEY3=VAL3".
*/
def setEnvFromInputString(env: HashMap[String, String], inputString: String): Unit = {
if (inputString != null && inputString.length() > 0) {
val childEnvs = inputString.split(",")
val p = Pattern.compile(environmentVariableRegex)
for (cEnv <- childEnvs) {
val parts = cEnv.split("=") // split on '='
val m = p.matcher(parts(1))
val sb = new StringBuffer
while (m.find()) {
val variable = m.group(1)
var replace = ""
if (env.get(variable) != None) {
replace = env.get(variable).get
} else {
// if this key is not configured for the child .. get it from the env
replace = System.getenv(variable)
if (replace == null) {
// the env key is note present anywhere .. simply set it
replace = ""
}
}
m.appendReplacement(sb, Matcher.quoteReplacement(replace))
}
m.appendTail(sb)
// This treats the environment variable as path variable delimited by `File.pathSeparator`
// This is kept for backward compatibility and consistency with Hadoop's behavior
addPathToEnvironment(env, parts(0), sb.toString)
}
}
}
private val environmentVariableRegex: String = {
if (Utils.isWindows) {
"%([A-Za-z_][A-Za-z0-9_]*?)%"
} else {
"\\$([A-Za-z_][A-Za-z0-9_]*)"
}
}
/**
* The handler if an OOM Exception is thrown by the JVM must be configured on Windows
* differently: the 'taskkill' command should be used, whereas Unix-based systems use 'kill'.
*
* As the JVM interprets both %p and %%p as the same, we can use either of them. However,
* some tests on Windows computers suggest, that the JVM only accepts '%%p'.
*
* Furthermore, the behavior of the character '%' on the Windows command line differs from
* the behavior of '%' in a .cmd file: it gets interpreted as an incomplete environment
* variable. Windows .cmd files escape a '%' by '%%'. Thus, the correct way of writing
* '%%p' in an escaped way is '%%%%p'.
*
* @return The correct OOM Error handler JVM option, platform dependent.
*/
def getOutOfMemoryErrorArgument : String = {
if (Utils.isWindows) {
escapeForShell("-XX:OnOutOfMemoryError=taskkill /F /PID %%%%p")
} else {
"-XX:OnOutOfMemoryError='kill %p'"
}
}
/**
* Escapes a string for inclusion in a command line executed by Yarn. Yarn executes commands
* using either
*
* (Unix-based) `bash -c "command arg1 arg2"` and that means plain quoting doesn't really work.
* The argument is enclosed in single quotes and some key characters are escaped.
*
* (Windows-based) part of a .cmd file in which case windows escaping for each argument must be
* applied. Windows is quite lenient, however it is usually Java that causes trouble, needing to
* distinguish between arguments starting with '-' and class names. If arguments are surrounded
* by ' java takes the following string as is, hence an argument is mistakenly taken as a class
* name which happens to start with a '-'. The way to avoid this, is to surround nothing with
* a ', but instead with a ".
*
* @param arg A single argument.
* @return Argument quoted for execution via Yarn's generated shell script.
*/
def escapeForShell(arg: String): String = {
if (arg != null) {
if (Utils.isWindows) {
YarnCommandBuilderUtils.quoteForBatchScript(arg)
} else {
val escaped = new StringBuilder("'")
for (i <- 0 to arg.length() - 1) {
arg.charAt(i) match {
case '$' => escaped.append("\\$")
case '"' => escaped.append("\\\"")
case '\'' => escaped.append("'\\''")
case c => escaped.append(c)
}
}
escaped.append("'").toString()
}
} else {
arg
}
}
def getApplicationAclsForYarn(securityMgr: SecurityManager)
: Map[ApplicationAccessType, String] = {
Map[ApplicationAccessType, String] (
ApplicationAccessType.VIEW_APP -> securityMgr.getViewAcls,
ApplicationAccessType.MODIFY_APP -> securityMgr.getModifyAcls
)
}
/**
* Expand environment variable using Yarn API.
* If environment.$$() is implemented, return the result of it.
* Otherwise, return the result of environment.$()
* Note: $$() is added in Hadoop 2.4.
*/
private lazy val expandMethod =
Try(classOf[Environment].getMethod("$$"))
.getOrElse(classOf[Environment].getMethod("$"))
def expandEnvironment(environment: Environment): String =
expandMethod.invoke(environment).asInstanceOf[String]
/**
* Get class path separator using Yarn API.
* If ApplicationConstants.CLASS_PATH_SEPARATOR is implemented, return it.
* Otherwise, return File.pathSeparator
* Note: CLASS_PATH_SEPARATOR is added in Hadoop 2.4.
*/
private lazy val classPathSeparatorField =
Try(classOf[ApplicationConstants].getField("CLASS_PATH_SEPARATOR"))
.getOrElse(classOf[File].getField("pathSeparator"))
def getClassPathSeparator(): String = {
classPathSeparatorField.get(null).asInstanceOf[String]
}
/**
* Getting the initial target number of executors depends on whether dynamic allocation is
* enabled.
* If not using dynamic allocation it gets the number of executors reqeusted by the user.
*/
def getInitialTargetExecutorNumber(
conf: SparkConf,
numExecutors: Int = DEFAULT_NUMBER_EXECUTORS): Int = {
if (Utils.isDynamicAllocationEnabled(conf)) {
val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0)
val initialNumExecutors =
conf.getInt("spark.dynamicAllocation.initialExecutors", minNumExecutors)
val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors", Int.MaxValue)
require(initialNumExecutors >= minNumExecutors && initialNumExecutors <= maxNumExecutors,
s"initial executor number $initialNumExecutors must between min executor number" +
s"$minNumExecutors and max executor number $maxNumExecutors")
initialNumExecutors
} else {
val targetNumExecutors =
sys.env.get("SPARK_EXECUTOR_INSTANCES").map(_.toInt).getOrElse(numExecutors)
// System property can override environment variable.
conf.getInt("spark.executor.instances", targetNumExecutors)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy