org.apache.thrift.server.AbstractNonblockingServer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of libthrift Show documentation
Show all versions of libthrift Show documentation
Thrift is a software framework for scalable cross-language services development.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.thrift.server;
import org.apache.thrift.TAsyncProcessor;
import org.apache.thrift.TByteArrayOutputStream;
import org.apache.thrift.TException;
import org.apache.thrift.protocol.TProtocol;
import org.apache.thrift.transport.layered.TFramedTransport;
import org.apache.thrift.transport.TIOStreamTransport;
import org.apache.thrift.transport.TMemoryInputTransport;
import org.apache.thrift.transport.TNonblockingServerTransport;
import org.apache.thrift.transport.TNonblockingTransport;
import org.apache.thrift.transport.TTransport;
import org.apache.thrift.transport.TTransportException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.spi.SelectorProvider;
import java.util.HashSet;
import java.util.Set;
import java.util.concurrent.atomic.AtomicLong;
/**
* Provides common methods and classes used by nonblocking TServer
* implementations.
*/
public abstract class AbstractNonblockingServer extends TServer {
protected final Logger LOGGER = LoggerFactory.getLogger(getClass().getName());
public static abstract class AbstractNonblockingServerArgs> extends AbstractServerArgs {
public long maxReadBufferBytes = 256 * 1024 * 1024;
public AbstractNonblockingServerArgs(TNonblockingServerTransport transport) {
super(transport);
transportFactory(new TFramedTransport.Factory());
}
}
/**
* The maximum amount of memory we will allocate to client IO buffers at a
* time. Without this limit, the server will gladly allocate client buffers
* right into an out of memory exception, rather than waiting.
*/
final long MAX_READ_BUFFER_BYTES;
/**
* How many bytes are currently allocated to read buffers.
*/
final AtomicLong readBufferBytesAllocated = new AtomicLong(0);
public AbstractNonblockingServer(AbstractNonblockingServerArgs args) {
super(args);
MAX_READ_BUFFER_BYTES = args.maxReadBufferBytes;
}
/**
* Begin accepting connections and processing invocations.
*/
public void serve() {
// start any IO threads
if (!startThreads()) {
return;
}
// start listening, or exit
if (!startListening()) {
return;
}
setServing(true);
// this will block while we serve
waitForShutdown();
setServing(false);
// do a little cleanup
stopListening();
}
/**
* Starts any threads required for serving.
*
* @return true if everything went ok, false if threads could not be started.
*/
protected abstract boolean startThreads();
/**
* A method that will block until when threads handling the serving have been
* shut down.
*/
protected abstract void waitForShutdown();
/**
* Have the server transport start accepting connections.
*
* @return true if we started listening successfully, false if something went
* wrong.
*/
protected boolean startListening() {
try {
serverTransport_.listen();
return true;
} catch (TTransportException ttx) {
LOGGER.error("Failed to start listening on server socket!", ttx);
return false;
}
}
/**
* Stop listening for connections.
*/
protected void stopListening() {
serverTransport_.close();
}
/**
* Perform an invocation. This method could behave several different ways -
* invoke immediately inline, queue for separate execution, etc.
*
* @return true if invocation was successfully requested, which is not a
* guarantee that invocation has completed. False if the request
* failed.
*/
protected abstract boolean requestInvoke(FrameBuffer frameBuffer);
/**
* An abstract thread that handles selecting on a set of transports and
* {@link FrameBuffer FrameBuffers} associated with selected keys
* corresponding to requests.
*/
protected abstract class AbstractSelectThread extends Thread {
protected Selector selector;
// List of FrameBuffers that want to change their selection interests.
protected final Set selectInterestChanges = new HashSet();
public AbstractSelectThread() throws IOException {
this.selector = SelectorProvider.provider().openSelector();
}
/**
* If the selector is blocked, wake it up.
*/
public void wakeupSelector() {
selector.wakeup();
}
/**
* Add FrameBuffer to the list of select interest changes and wake up the
* selector if it's blocked. When the select() call exits, it'll give the
* FrameBuffer a chance to change its interests.
*/
public void requestSelectInterestChange(FrameBuffer frameBuffer) {
synchronized (selectInterestChanges) {
selectInterestChanges.add(frameBuffer);
}
// wakeup the selector, if it's currently blocked.
selector.wakeup();
}
/**
* Check to see if there are any FrameBuffers that have switched their
* interest type from read to write or vice versa.
*/
protected void processInterestChanges() {
synchronized (selectInterestChanges) {
for (FrameBuffer fb : selectInterestChanges) {
fb.changeSelectInterests();
}
selectInterestChanges.clear();
}
}
/**
* Do the work required to read from a readable client. If the frame is
* fully read, then invoke the method call.
*/
protected void handleRead(SelectionKey key) {
FrameBuffer buffer = (FrameBuffer) key.attachment();
if (!buffer.read()) {
cleanupSelectionKey(key);
return;
}
// if the buffer's frame read is complete, invoke the method.
if (buffer.isFrameFullyRead()) {
if (!requestInvoke(buffer)) {
cleanupSelectionKey(key);
}
}
}
/**
* Let a writable client get written, if there's data to be written.
*/
protected void handleWrite(SelectionKey key) {
FrameBuffer buffer = (FrameBuffer) key.attachment();
if (!buffer.write()) {
cleanupSelectionKey(key);
}
}
/**
* Do connection-close cleanup on a given SelectionKey.
*/
protected void cleanupSelectionKey(SelectionKey key) {
// remove the records from the two maps
FrameBuffer buffer = (FrameBuffer) key.attachment();
if (buffer != null) {
// close the buffer
buffer.close();
}
// cancel the selection key
key.cancel();
}
} // SelectThread
/**
* Possible states for the FrameBuffer state machine.
*/
private enum FrameBufferState {
// in the midst of reading the frame size off the wire
READING_FRAME_SIZE,
// reading the actual frame data now, but not all the way done yet
READING_FRAME,
// completely read the frame, so an invocation can now happen
READ_FRAME_COMPLETE,
// waiting to get switched to listening for write events
AWAITING_REGISTER_WRITE,
// started writing response data, not fully complete yet
WRITING,
// another thread wants this framebuffer to go back to reading
AWAITING_REGISTER_READ,
// we want our transport and selection key invalidated in the selector
// thread
AWAITING_CLOSE
}
/**
* Class that implements a sort of state machine around the interaction with a
* client and an invoker. It manages reading the frame size and frame data,
* getting it handed off as wrapped transports, and then the writing of
* response data back to the client. In the process it manages flipping the
* read and write bits on the selection key for its client.
*/
public class FrameBuffer {
private final Logger LOGGER = LoggerFactory.getLogger(getClass().getName());
// the actual transport hooked up to the client.
protected final TNonblockingTransport trans_;
// the SelectionKey that corresponds to our transport
protected final SelectionKey selectionKey_;
// the SelectThread that owns the registration of our transport
protected final AbstractSelectThread selectThread_;
// where in the process of reading/writing are we?
protected FrameBufferState state_ = FrameBufferState.READING_FRAME_SIZE;
// the ByteBuffer we'll be using to write and read, depending on the state
protected ByteBuffer buffer_;
protected final TByteArrayOutputStream response_;
// the frame that the TTransport should wrap.
protected final TMemoryInputTransport frameTrans_;
// the transport that should be used to connect to clients
protected final TTransport inTrans_;
protected final TTransport outTrans_;
// the input protocol to use on frames
protected final TProtocol inProt_;
// the output protocol to use on frames
protected final TProtocol outProt_;
// context associated with this connection
protected final ServerContext context_;
public FrameBuffer(final TNonblockingTransport trans,
final SelectionKey selectionKey,
final AbstractSelectThread selectThread) throws TTransportException {
trans_ = trans;
selectionKey_ = selectionKey;
selectThread_ = selectThread;
buffer_ = ByteBuffer.allocate(4);
frameTrans_ = new TMemoryInputTransport();
response_ = new TByteArrayOutputStream();
inTrans_ = inputTransportFactory_.getTransport(frameTrans_);
outTrans_ = outputTransportFactory_.getTransport(new TIOStreamTransport(response_));
inProt_ = inputProtocolFactory_.getProtocol(inTrans_);
outProt_ = outputProtocolFactory_.getProtocol(outTrans_);
if (eventHandler_ != null) {
context_ = eventHandler_.createContext(inProt_, outProt_);
} else {
context_ = null;
}
}
/**
* Give this FrameBuffer a chance to read. The selector loop should have
* received a read event for this FrameBuffer.
*
* @return true if the connection should live on, false if it should be
* closed
*/
public boolean read() {
if (state_ == FrameBufferState.READING_FRAME_SIZE) {
// try to read the frame size completely
if (!internalRead()) {
return false;
}
// if the frame size has been read completely, then prepare to read the
// actual frame.
if (buffer_.remaining() == 0) {
// pull out the frame size as an integer.
int frameSize = buffer_.getInt(0);
if (frameSize <= 0) {
LOGGER.error("Read an invalid frame size of " + frameSize
+ ". Are you using TFramedTransport on the client side?");
return false;
}
// if this frame will always be too large for this server, log the
// error and close the connection.
if (frameSize > MAX_READ_BUFFER_BYTES) {
LOGGER.error("Read a frame size of " + frameSize
+ ", which is bigger than the maximum allowable buffer size for ALL connections.");
return false;
}
// if this frame will push us over the memory limit, then return.
// with luck, more memory will free up the next time around.
if (readBufferBytesAllocated.get() + frameSize > MAX_READ_BUFFER_BYTES) {
return true;
}
// increment the amount of memory allocated to read buffers
readBufferBytesAllocated.addAndGet(frameSize + 4);
// reallocate the readbuffer as a frame-sized buffer
buffer_ = ByteBuffer.allocate(frameSize + 4);
buffer_.putInt(frameSize);
state_ = FrameBufferState.READING_FRAME;
} else {
// this skips the check of READING_FRAME state below, since we can't
// possibly go on to that state if there's data left to be read at
// this one.
return true;
}
}
// it is possible to fall through from the READING_FRAME_SIZE section
// to READING_FRAME if there's already some frame data available once
// READING_FRAME_SIZE is complete.
if (state_ == FrameBufferState.READING_FRAME) {
if (!internalRead()) {
return false;
}
// since we're already in the select loop here for sure, we can just
// modify our selection key directly.
if (buffer_.remaining() == 0) {
// get rid of the read select interests
selectionKey_.interestOps(0);
state_ = FrameBufferState.READ_FRAME_COMPLETE;
}
return true;
}
// if we fall through to this point, then the state must be invalid.
LOGGER.error("Read was called but state is invalid (" + state_ + ")");
return false;
}
/**
* Give this FrameBuffer a chance to write its output to the final client.
*/
public boolean write() {
if (state_ == FrameBufferState.WRITING) {
try {
if (trans_.write(buffer_) < 0) {
return false;
}
} catch (TTransportException e) {
LOGGER.warn("Got an Exception during write", e);
return false;
}
// we're done writing. now we need to switch back to reading.
if (buffer_.remaining() == 0) {
prepareRead();
}
return true;
}
LOGGER.error("Write was called, but state is invalid (" + state_ + ")");
return false;
}
/**
* Give this FrameBuffer a chance to set its interest to write, once data
* has come in.
*/
public void changeSelectInterests() {
switch (state_) {
case AWAITING_REGISTER_WRITE:
// set the OP_WRITE interest
selectionKey_.interestOps(SelectionKey.OP_WRITE);
state_ = FrameBufferState.WRITING;
break;
case AWAITING_REGISTER_READ:
prepareRead();
break;
case AWAITING_CLOSE:
close();
selectionKey_.cancel();
break;
default:
LOGGER.error(
"changeSelectInterest was called, but state is invalid ({})",
state_);
}
}
/**
* Shut the connection down.
*/
public void close() {
// if we're being closed due to an error, we might have allocated a
// buffer that we need to subtract for our memory accounting.
if (state_ == FrameBufferState.READING_FRAME ||
state_ == FrameBufferState.READ_FRAME_COMPLETE ||
state_ == FrameBufferState.AWAITING_CLOSE) {
readBufferBytesAllocated.addAndGet(-buffer_.array().length);
}
trans_.close();
if (eventHandler_ != null) {
eventHandler_.deleteContext(context_, inProt_, outProt_);
}
}
/**
* Check if this FrameBuffer has a full frame read.
*/
public boolean isFrameFullyRead() {
return state_ == FrameBufferState.READ_FRAME_COMPLETE;
}
/**
* After the processor has processed the invocation, whatever thread is
* managing invocations should call this method on this FrameBuffer so we
* know it's time to start trying to write again. Also, if it turns out that
* there actually isn't any data in the response buffer, we'll skip trying
* to write and instead go back to reading.
*/
public void responseReady() {
// the read buffer is definitely no longer in use, so we will decrement
// our read buffer count. we do this here as well as in close because
// we'd like to free this read memory up as quickly as possible for other
// clients.
readBufferBytesAllocated.addAndGet(-buffer_.array().length);
if (response_.len() == 0) {
// go straight to reading again. this was probably an oneway method
state_ = FrameBufferState.AWAITING_REGISTER_READ;
buffer_ = null;
} else {
buffer_ = ByteBuffer.wrap(response_.get(), 0, response_.len());
// set state that we're waiting to be switched to write. we do this
// asynchronously through requestSelectInterestChange() because there is
// a possibility that we're not in the main thread, and thus currently
// blocked in select(). (this functionality is in place for the sake of
// the HsHa server.)
state_ = FrameBufferState.AWAITING_REGISTER_WRITE;
}
requestSelectInterestChange();
}
/**
* Actually invoke the method signified by this FrameBuffer.
*/
public void invoke() {
frameTrans_.reset(buffer_.array());
response_.reset();
try {
if (eventHandler_ != null) {
eventHandler_.processContext(context_, inTrans_, outTrans_);
}
processorFactory_.getProcessor(inTrans_).process(inProt_, outProt_);
responseReady();
return;
} catch (TException te) {
LOGGER.warn("Exception while invoking!", te);
} catch (Throwable t) {
LOGGER.error("Unexpected throwable while invoking!", t);
}
// This will only be reached when there is a throwable.
state_ = FrameBufferState.AWAITING_CLOSE;
requestSelectInterestChange();
}
/**
* Perform a read into buffer.
*
* @return true if the read succeeded, false if there was an error or the
* connection closed.
*/
private boolean internalRead() {
try {
return trans_.read(buffer_) >= 0;
} catch (TTransportException e) {
LOGGER.warn("Got an Exception in internalRead", e);
return false;
}
}
/**
* We're done writing, so reset our interest ops and change state
* accordingly.
*/
private void prepareRead() {
// we can set our interest directly without using the queue because
// we're in the select thread.
selectionKey_.interestOps(SelectionKey.OP_READ);
// get ready for another go-around
buffer_ = ByteBuffer.allocate(4);
state_ = FrameBufferState.READING_FRAME_SIZE;
}
/**
* When this FrameBuffer needs to change its select interests and execution
* might not be in its select thread, then this method will make sure the
* interest change gets done when the select thread wakes back up. When the
* current thread is this FrameBuffer's select thread, then it just does the
* interest change immediately.
*/
protected void requestSelectInterestChange() {
if (Thread.currentThread() == this.selectThread_) {
changeSelectInterests();
} else {
this.selectThread_.requestSelectInterestChange(this);
}
}
} // FrameBuffer
public class AsyncFrameBuffer extends FrameBuffer {
public AsyncFrameBuffer(TNonblockingTransport trans, SelectionKey selectionKey, AbstractSelectThread selectThread) throws TTransportException {
super(trans, selectionKey, selectThread);
}
public TProtocol getInputProtocol() {
return inProt_;
}
public TProtocol getOutputProtocol() {
return outProt_;
}
public void invoke() {
frameTrans_.reset(buffer_.array());
response_.reset();
try {
if (eventHandler_ != null) {
eventHandler_.processContext(context_, inTrans_, outTrans_);
}
((TAsyncProcessor)processorFactory_.getProcessor(inTrans_)).process(this);
return;
} catch (TException te) {
LOGGER.warn("Exception while invoking!", te);
} catch (Throwable t) {
LOGGER.error("Unexpected throwable while invoking!", t);
}
// This will only be reached when there is a throwable.
state_ = FrameBufferState.AWAITING_CLOSE;
requestSelectInterestChange();
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy