org.apache.tika.example.TextStatsFromTikaEval Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tika-example Show documentation
Show all versions of tika-example Show documentation
This module contains examples of how to use Apache Tika.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.tika.example;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.apache.tika.eval.core.textstats.CommonTokens;
import org.apache.tika.eval.core.textstats.CompositeTextStatsCalculator;
import org.apache.tika.eval.core.textstats.TextStatsCalculator;
import org.apache.tika.eval.core.tokens.CommonTokenResult;
/**
* These examples create a new {@link CompositeTextStatsCalculator}
* for each call. This is extremely inefficient because the lang id
* model has to be loaded and the common words for each call.
*/
public class TextStatsFromTikaEval {
/**
* Use the default language id models and the default common tokens
* lists in tika-eval to calculate the out-of-vocabulary percentage
* for a given string.
*
* @param txt
* @return
*/
public double getOOV(String txt) {
List calculators = new ArrayList<>();
calculators.add(new CommonTokens());
CompositeTextStatsCalculator calc = new CompositeTextStatsCalculator(calculators);
Map results = calc.calculate(txt);
/*
Note that the OOV requires language id, so you can also
retrieve the detected languages with this:
List detectedLanguages = (List) results.get(LanguageIDWrapper.class);
*/
CommonTokenResult result = (CommonTokenResult) results.get(CommonTokens.class);
result.getLangCode();
return result.getOOV();
}
}