All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.tika.parser.recognition.tf.inceptionapi.py Maven / Gradle / Ivy

There is a newer version: 3.0.0-BETA2
Show newest version
#!/usr/bin/env python
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#    http://www.apache.org/licenses/LICENSE-2.0
#  Unless required by applicable law or agreed to in writing,
#  software distributed under the License is distributed on an
#  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
#  KIND, either express or implied.  See the License for the
#  specific language governing permissions and limitations
#  under the License.

"""
Image classification with Inception.

This script exposes the tensorflow's inception classification service over REST API.

For more details, visit:
    https://tensorflow.org/tutorials/image_recognition/

Requirements :
  Flask
  tensorflow
  numpy
  requests
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os.path
import re
import sys
import tarfile

try:
    #This import is placed inside here to ensure that video_util and OpenCV is not required for image recognition APIs
    from video_util import get_center_frame, get_frames_interval, get_n_frames
except:
    print("Can't import video libraries, No video functionality is available")
    
import numpy as np
from six.moves import urllib
import tensorflow as tf
from datasets import imagenet, dataset_utils
from nets import inception
from preprocessing import inception_preprocessing

slim = tf.contrib.slim

import requests
import json
json.encoder.FLOAT_REPR = lambda o: format(
    o, '.2f')  # JSON serialization of floats
from time import time


import tempfile
import flask


FLAGS = tf.app.flags.FLAGS

# inception_v4.ckpt
#   Inception V4 checkpoint file.
# imagenet_metadata.txt
#   Map from synset ID to a human readable string.
# imagenet_lsvrc_2015_synsets.txt
#   Text representation of a protocol buffer mapping a label to synset ID.
tf.app.flags.DEFINE_string(
    'model_dir', '/tmp/imagenet',
    """Path to inception_v4.ckpt, """
    """imagenet_lsvrc_2015_synsets.txt, and """
    """imagenet_metadata.txt.""")
tf.app.flags.DEFINE_integer('port', '8764', """Server PORT, default:8764""")
tf.app.flags.DEFINE_string('log', 'inception.log',
                           """Log file name, default: inception.log""")

# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz'
# pylint: enable=line-too-long


def create_readable_names_for_imagenet_labels():
    """Create a dict mapping label id to human readable string.

    Returns:
        labels_to_names: dictionary where keys are integers from to 1000
        and values are human-readable names.

    We retrieve a synset file, which contains a list of valid synset labels used
    by ILSVRC competition. There is one synset one per line, eg.
            #   n01440764
            #   n01443537
    We also retrieve a synset_to_human_file, which contains a mapping from synsets
    to human-readable names for every synset in Imagenet. These are stored in a
    tsv format, as follows:
            #   n02119247    black fox
            #   n02119359    silver fox
    We assign each synset (in alphabetical order) an integer, starting from 1
    (since 0 is reserved for the background class).

    Code is based on
    https://github.com/tensorflow/models/blob/master/inception/inception/data/build_imagenet_data.py#L463
    """

    # pylint: disable=line-too-long

    dest_directory = FLAGS.model_dir

    synset_list = [s.strip() for s in open(os.path.join(
        dest_directory, 'imagenet_lsvrc_2015_synsets.txt')).readlines()]
    num_synsets_in_ilsvrc = len(synset_list)
    assert num_synsets_in_ilsvrc == 1000

    synset_to_human_list = open(os.path.join(
        dest_directory, 'imagenet_metadata.txt')).readlines()
    num_synsets_in_all_imagenet = len(synset_to_human_list)
    assert num_synsets_in_all_imagenet == 21842

    synset_to_human = {}
    for s in synset_to_human_list:
        parts = s.strip().split('\t')
        assert len(parts) == 2
        synset = parts[0]
        human = parts[1]
        synset_to_human[synset] = human

    label_index = 1
    labels_to_names = {0: 'background'}
    for synset in synset_list:
        name = synset_to_human[synset]
        labels_to_names[label_index] = name
        label_index += 1

    return labels_to_names


def util_download(url, dest_directory):
    """Downloads the file.

    Args:
      url: URL to download the file from.
      dest_directory: Destination directory
    Returns:
      Nothing
    """
    filename = url.split('/')[-1]
    filepath = os.path.join(dest_directory, filename)

    def _progress(count, block_size, total_size):
        sys.stdout.write('\r>> Downloading %s %.1f%%' % (
            filename, float(count * block_size) / float(total_size) * 100.0))
        sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(url, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')


def util_download_tar(url, dest_directory):
    """Downloads a file and extracts it.

    Args:
      url: URL to download the file from.
      dest_directory: Destination directory
    Returns:
      Nothing
    """
    filename = url.split('/')[-1]
    filepath = os.path.join(dest_directory, filename)

    def _progress(count, block_size, total_size):
        sys.stdout.write('\r>> Downloading %s %.1f%%' % (
            filename, float(count * block_size) / float(total_size) * 100.0))
        sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(url, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
    tarfile.open(filepath, 'r:gz').extractall(dest_directory)


def maybe_download_and_extract():
    """Download and extract model tar file."""
    dest_directory = FLAGS.model_dir
    if not tf.gfile.Exists(dest_directory):
        tf.gfile.MakeDirs(dest_directory)
    if not tf.gfile.Exists(os.path.join(dest_directory, 'inception_v4.ckpt')):
        util_download_tar(DATA_URL, dest_directory)
    # pylint: disable=line-too-long
    if not tf.gfile.Exists(os.path.join(dest_directory, 'imagenet_lsvrc_2015_synsets.txt')):
        util_download(
            'https://raw.githubusercontent.com/tensorflow/models/master/inception/inception/data/imagenet_lsvrc_2015_synsets.txt', dest_directory)
    if not tf.gfile.Exists(os.path.join(dest_directory, 'imagenet_metadata.txt')):
        util_download(
            'https://raw.githubusercontent.com/tensorflow/models/master/inception/inception/data/imagenet_metadata.txt', dest_directory)
    # pylint: enable=line-too-long


def current_time():
    """
        Returns current time in milli seconds
    """
    return int(1000 * time())


class Classifier(flask.Flask):
    '''
    Classifier Service class
    '''

    def __init__(self, name):
        super(Classifier, self).__init__(name)
        maybe_download_and_extract()
        import logging
        from logging.handlers import RotatingFileHandler
        file_handler = RotatingFileHandler(
            FLAGS.log, maxBytes=1024 * 1024 * 100, backupCount=20)
        file_handler.setLevel(logging.INFO)
        formatter = logging.Formatter(
            "%(asctime)s - %(name)s - %(levelname)s - %(message)s")
        file_handler.setFormatter(formatter)
        self.logger.addHandler(file_handler)
        self.names = imagenet.create_readable_names_for_imagenet_labels()
        self.image_size = inception.inception_v4.default_image_size

        self.image_str_placeholder = tf.placeholder(tf.string)
        image = tf.image.decode_jpeg(self.image_str_placeholder, channels=3)
        processed_image = inception_preprocessing.preprocess_image(
            image, self.image_size, self.image_size, is_training=False)
        processed_images = tf.expand_dims(processed_image, 0)
        # Create the model, use the default arg scope to configure the
        # batch norm parameters.
        with slim.arg_scope(inception.inception_v4_arg_scope()):
            logits, _ = inception.inception_v4(
                processed_images, num_classes=1001, is_training=False)
        self.probabilities = tf.nn.softmax(logits)

        dest_directory = FLAGS.model_dir
        init_fn = slim.assign_from_checkpoint_fn(
            os.path.join(dest_directory, 'inception_v4.ckpt'),
            slim.get_model_variables('InceptionV4'))

        self.sess = tf.Session()
        init_fn(self.sess)

    def classify(self, image_string, topk):
        eval_probabilities = self.sess.run(self.probabilities, feed_dict={
                                           self.image_str_placeholder: image_string})
        eval_probabilities = eval_probabilities[0, 0:]
        sorted_inds = [i[0] for i in sorted(
            enumerate(-eval_probabilities), key=lambda x:x[1])]

        if topk == None:
            topk = len(sorted_inds)
        
        res = []
        for i in range(topk):
            index = sorted_inds[i]
            score = float(eval_probabilities[index])
            res.append((index, self.names[index], score))
        return res


from flask import Flask, request, abort, g, Response, jsonify
app = Classifier(__name__)


def get_remotefile(url, success=200, timeout=10):
    """
        Given HTTP URL, this api gets the content of it
        returns (Content-Type, image_content)
    """
    try:
        app.logger.info("GET: %s" % url)
        auth = None
        res = requests.get(url, stream=True, timeout=timeout, auth=auth)
        if res.status_code == success:
            return res.headers.get('Content-Type', 'application/octet-stream'), res.raw.data
    except:
        pass
    return None, None


@app.route("/")
def index():
    """
        The index page which provide information about other API end points
    """
    return """
    

Inception REST API

The following API end points are valid

    Inception V4

  • /inception/v4/ping -
    Description : checks availability of the service. returns "pong" with status 200 when it is available
  • /inception/v4/classify -
    Description This is a classifier service that can classify images
    Query Params :
    topk : type = int : top classes to get; default : 10
    human : type = boolean : human readable class names; default : true
    How to supply Image Content
    With HTTP GET : Include a query parameter url which is an http url of JPEG image
    Example: curl "localhost:8764/inception/v4/classify?url=http://xyz.com/example.jpg"
    With HTTP POST : POST JPEG image content as binary data in request body.
    Example: curl -X POST "localhost:8764/inception/v4/classify?topk=10&human=false" --data-binary @example.jpg
  • /inception/v4/classify/video -

    Description This is a classifier service that can classify videos
    Query Params :
    topk : type = int : top classes to get; default : 10
    human : type = boolean : human readable class names; default : true
    mode : options = {"center", "interval", "fixed"} : Modes of frame extraction; default : center
    "center" - Just one frame in center.
    "interval" - Extracts frames after fixed interval.
    "fixed" - Extract fixed number of frames.
    frame-interval : type = int : Interval for frame extraction to be used with INTERVAL mode. If frame_interval=10 then every 10th frame will be extracted; default : 10
    num-frame : type = int : Number of frames to be extracted from video while using FIXED model. If num_frame=10 then 10 frames equally distant from each other will be extracted; default : 10
    How to supply Video Content
    With HTTP GET : Include a query parameter url which is path on file system
    Example: curl "localhost:8764/inception/v4/classify/video?url=filesystem/path/to/video"
    With HTTP POST : POST video content as binary data in request body. If video can be decoded by OpenCV it should be fine. It's tested on mp4 and avi on mac
    Include a query parameter ext this extension is needed to tell OpenCV which decoder to use, default is ".mp4"
    Example: curl -X POST "localhost:8764/inception/v4/classify/video?topk=10&human=false" --data-binary @example.mp4
""" @app.route("/inception/v4/ping", methods=["GET"]) def ping_pong(): """API to do health check. If this says status code 200, then healthy """ return "pong" @app.route("/inception/v4/classify", methods=["GET", "POST"]) def classify_image(): """ API to classify images """ st = current_time() topk = int(request.args.get("topk", "10")) human = request.args.get("human", "true").lower() in ("true", "1", "yes") if request.method == 'POST': image_data = request.get_data() else: url = request.args.get("url") c_type, image_data = get_remotefile(url) if not image_data: return flask.Response(status=400, response=jsonify(error="Couldnot HTTP GET %s" % url)) if 'image/jpeg' not in c_type: return flask.Response(status=400, response=jsonify(error="Content of %s is not JPEG" % url)) read_time = current_time() - st st = current_time() # reset start time try: classes = app.classify(image_string=image_data, topk=topk) except Exception as e: app.logger.error(e) return Response(status=400, response=str(e)) classids, classnames, confidence = zip(*classes) classifier_time = current_time() - st app.logger.info("Classifier time : %d" % classifier_time) res = { 'classids': classids, 'confidence': confidence, 'time': { 'read': read_time, 'classification': classifier_time, 'units': 'ms' } } if human: res['classnames'] = classnames return Response(response=json.dumps(res), status=200, mimetype="application/json") CENTER = "center" INTERVAL = "interval" FIXED = "fixed" ALLOWED_MODE = set([CENTER ,INTERVAL , FIXED]) @app.route("/inception/v4/classify/video", methods=["GET", "POST"]) def classify_video(): """ API to classify videos Request args - url - PATH of file topk - number of labels human - human readable or not mode - Modes of frame extraction {"center", "interval", "fixed"} "center" - Just one frame in center. "interval" - Extracts frames after fixed interval. "fixed" - Extract fixed number of frames. frame-interval - Interval for frame extraction to be used with INTERVAL mode. If frame_interval=10 then every 10th frame will be extracted. num-frame - Number of frames to be extracted from video while using FIXED model. If num_frame=10 then 10 frames equally distant from each other will be extracted ext - If video is sent in binary format, then ext is needed to tell OpenCV which decoder to use. eg ".mp4" """ st = current_time() topk = int(request.args.get("topk", "10")) human = request.args.get("human", "true").lower() in ("true", "1", "yes") mode = request.args.get("mode", CENTER).lower() if mode not in ALLOWED_MODE: ''' Throw invalid request error ''' return flask.Response(status=400, response=jsonify(error="not a valid mode. Available mode %s" % str(ALLOWED_MODE))) frame_interval = int(request.args.get("frame-interval", "10")) num_frame = int(request.args.get("num-frame", "10")) if request.method == 'POST': video_data = request.get_data() ext = request.args.get("ext", ".mp4").lower() temp_file = tempfile.NamedTemporaryFile(suffix=ext) temp_file.file.write(video_data) temp_file.file.close() url = temp_file.name else: url = request.args.get("url") read_time = current_time() - st st = current_time() # reset start time if mode == CENTER: image_data_arr = [get_center_frame(url)] elif mode == INTERVAL: image_data_arr = get_frames_interval(url, frame_interval) else: image_data_arr = get_n_frames(url, num_frame) classes = [] for image_data in image_data_arr: try: _classes = app.classify(image_data , topk=None) except Exception as e: app.logger.error(e) return Response(status=400, response=str(e)) _classes.sort() if len(classes) == 0: classes = _classes else: for idx,_c in enumerate(_classes): c = list(classes[idx]) c[2] += _c[2] classes[idx] = tuple(c) # avg out confidence score for idx,c in enumerate(classes): c = list(c) c[2] = c[2]/len(image_data_arr) classes[idx] = tuple(c) classes = sorted(classes, key=lambda tup: tup[2])[-topk:][::-1] classids, classnames, confidence = zip(*classes) classifier_time = current_time() - st app.logger.info("Classifier time : %d" % classifier_time) res = { 'classids' : classids, 'confidence': confidence, 'time': { 'read' : read_time, 'classification': classifier_time, 'units': 'ms' } } if human: res['classnames'] = classnames return Response(response=json.dumps(res), status=200, mimetype="application/json") def main(_): if not app.debug: print("Serving on port %d" % FLAGS.port) app.run(host="0.0.0.0", port=FLAGS.port) if __name__ == '__main__': tf.app.run()




© 2015 - 2024 Weber Informatics LLC | Privacy Policy