org.apache.openejb.math.util.MathUtils Maven / Gradle / Ivy
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.openejb.math.util; import org.apache.openejb.math.MathRuntimeException; import java.math.BigDecimal; import java.math.BigInteger; import java.util.Arrays; /** * Some useful additions to the built-in functions in {@link Math}. * * @version $Revision: 927249 $ $Date: 2010-03-24 18:06:51 -0700 (Wed, 24 Mar 2010) $ */ public final class MathUtils { /** * Smallest positive number such that 1 - EPSILON is not numerically equal to 1. */ public static final double EPSILON = 0x1.0p-53; /** * Safe minimum, such that 1 / SAFE_MIN does not overflow. *
is 20. If the computed value exceedsIn IEEE 754 arithmetic, this is also the smallest normalized * number 2-1022.
*/ public static final double SAFE_MIN = 0x1.0p-1022; /** * 2 π. * * @since 2.1 */ public static final double TWO_PI = 2 * Math.PI; /** * -1.0 cast as a byte. */ private static final byte NB = (byte) -1; /** * -1.0 cast as a short. */ private static final short NS = (short) -1; /** * 1.0 cast as a byte. */ private static final byte PB = (byte) 1; /** * 1.0 cast as a short. */ private static final short PS = (short) 1; /** * 0.0 cast as a byte. */ private static final byte ZB = (byte) 0; /** * 0.0 cast as a short. */ private static final short ZS = (short) 0; /** * Gap between NaN and regular numbers. */ private static final int NAN_GAP = 4 * 1024 * 1024; /** * Offset to order signed double numbers lexicographically. */ private static final long SGN_MASK = 0x8000000000000000L; /** * All long-representable factorials */ private static final long[] FACTORIALS = new long[]{ 1L, 1L, 2L, 6L, 24L, 120L, 720L, 5040L, 40320L, 362880L, 3628800L, 39916800L, 479001600L, 6227020800L, 87178291200L, 1307674368000L, 20922789888000L, 355687428096000L, 6402373705728000L, 121645100408832000L, 2432902008176640000L}; /** * Private Constructor */ private MathUtils() { super(); } /** * Add two integers, checking for overflow. * * @param x an addend * @param y an addend * @return the sumx+y
* @throws ArithmeticException if the result can not be represented as an * int * @since 1.1 */ public static int addAndCheck(final int x, final int y) { final long s = (long) x + (long) y; if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: add"); } return (int) s; } /** * Add two long integers, checking for overflow. * * @param a an addend * @param b an addend * @return the suma+b
* @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ public static long addAndCheck(final long a, final long b) { return addAndCheck(a, b, "overflow: add"); } /** * Add two long integers, checking for overflow. * * @param a an addend * @param b an addend * @param msg the message to use for any thrown exception. * @return the suma+b
* @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ private static long addAndCheck(final long a, final long b, final String msg) { final long ret; if (a > b) { // use symmetry to reduce boundary cases ret = addAndCheck(b, a, msg); } else { // assert a <= b if (a < 0) { if (b < 0) { // check for negative overflow if (Long.MIN_VALUE - b <= a) { ret = a + b; } else { throw new ArithmeticException(msg); } } else { // opposite sign addition is always safe ret = a + b; } } else { // assert a >= 0 // assert b >= 0 // check for positive overflow if (a <= Long.MAX_VALUE - b) { ret = a + b; } else { throw new ArithmeticException(msg); } } } return ret; } /** * Returns an exact representation of the Binomial * Coefficient, "n choose k
", the number of *k
-element subsets that can be selected from an *n
-element set. ** Preconditions: *
*
* * @param n the size of the set * @param k the size of the subsets to be counted * @return- *
0 <= k <= n
(otherwise *IllegalArgumentException
is thrown)- The result is small enough to fit into a
*long
. The * largest value ofn
for which all coefficients are *< Long.MAX_VALUE
is 66. If the computed value exceeds *Long.MAX_VALUE
anArithMeticException
is * thrown.n choose k
* @throws IllegalArgumentException if preconditions are not met. * @throws ArithmeticException if the result is too large to be represented * by a long integer. */ public static long binomialCoefficient(final int n, final int k) { checkBinomial(n, k); if (n == k || k == 0) { return 1; } if (k == 1 || k == n - 1) { return n; } // Use symmetry for large k if (k > n / 2) { return binomialCoefficient(n, n - k); } // We use the formula // (n choose k) = n! / (n-k)! / k! // (n choose k) == ((n-k+1)*...*n) / (1*...*k) // which could be written // (n choose k) == (n-1 choose k-1) * n / k long result = 1; if (n <= 61) { // For n <= 61, the naive implementation cannot overflow. int i = n - k + 1; for (int j = 1; j <= k; j++) { result = result * i / j; i++; } } else if (n <= 66) { // For n > 61 but n <= 66, the result cannot overflow, // but we must take care not to overflow intermediate values. int i = n - k + 1; for (int j = 1; j <= k; j++) { // We know that (result * i) is divisible by j, // but (result * i) may overflow, so we split j: // Filter out the gcd, d, so j/d and i/d are integer. // result is divisible by (j/d) because (j/d) // is relative prime to (i/d) and is a divisor of // result * (i/d). final long d = gcd(i, j); result = result / (j / d) * i / d; i++; } } else { // For n > 66, a result overflow might occur, so we check // the multiplication, taking care to not overflow // unnecessary. int i = n - k + 1; for (int j = 1; j <= k; j++) { final long d = gcd(i, j); result = mulAndCheck(result / (j / d), i / d); i++; } } return result; } /** * Returns adouble
representation of the Binomial * Coefficient, "n choose k
", the number of *k
-element subsets that can be selected from an *n
-element set. ** Preconditions: *
*
* * @param n the size of the set * @param k the size of the subsets to be counted * @return- *
0 <= k <= n
(otherwise *IllegalArgumentException
is thrown)- The result is small enough to fit into a
*double
. The * largest value ofn
for which all coefficients are < * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE, * Double.POSITIVE_INFINITY is returnedn choose k
* @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientDouble(final int n, final int k) { checkBinomial(n, k); if (n == k || k == 0) { return 1d; } if (k == 1 || k == n - 1) { return n; } if (k > n / 2) { return binomialCoefficientDouble(n, n - k); } if (n < 67) { return binomialCoefficient(n, k); } double result = 1d; for (int i = 1; i <= k; i++) { result *= (double) (n - k + i) / (double) i; } return Math.floor(result + 0.5); } /** * Returns the naturallog
of the Binomial * Coefficient, "n choose k
", the number of *k
-element subsets that can be selected from an *n
-element set. ** Preconditions: *
*
* * @param n the size of the set * @param k the size of the subsets to be counted * @return- *
0 <= k <= n
(otherwise *IllegalArgumentException
is thrown)n choose k
* @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientLog(final int n, final int k) { checkBinomial(n, k); if (n == k || k == 0) { return 0; } if (k == 1 || k == n - 1) { return Math.log(n); } /* * For values small enough to do exact integer computation, * return the log of the exact value */ if (n < 67) { return Math.log(binomialCoefficient(n, k)); } /* * Return the log of binomialCoefficientDouble for values that will not * overflow binomialCoefficientDouble */ if (n < 1030) { return Math.log(binomialCoefficientDouble(n, k)); } if (k > n / 2) { return binomialCoefficientLog(n, n - k); } /* * Sum logs for values that could overflow */ double logSum = 0; // n!/(n-k)! for (int i = n - k + 1; i <= n; i++) { logSum += Math.log(i); } // divide by k! for (int i = 2; i <= k; i++) { logSum -= Math.log(i); } return logSum; } /** * Check binomial preconditions. * * @param n the size of the set * @param k the size of the subsets to be counted * @throws IllegalArgumentException if preconditions are not met. */ private static void checkBinomial(final int n, final int k) throws IllegalArgumentException { if (n < k) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= k for binomial coefficient (n,k), got n = {0}, k = {1}", n, k); } if (n < 0) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= 0 for binomial coefficient (n,k), got n = {0}", n); } } /** * Compares two numbers given some amount of allowed error. * * @param x the first number * @param y the second number * @param eps the amount of error to allow when checking for equality * @return*/ public static int compareTo(final double x, final double y, final double eps) { if (equals(x, y, eps)) { return 0; } else if (x < y) { return -1; } return 1; } /** * Returns the * hyperbolic cosine of x. * * @param x double value for which to find the hyperbolic cosine * @return hyperbolic cosine of x */ public static double cosh(final double x) { return (Math.exp(x) + Math.exp(-x)) / 2.0; } /** * Returns true iff both arguments are NaN or neither is NaN and they are * equal * * @param x first value * @param y second value * @return true if the values are equal or both are NaN */ public static boolean equals(final double x, final double y) { return Double.isNaN(x) && Double.isNaN(y) || x == y; } /** * Returns true iff both arguments are equal or within the range of allowed * error (inclusive). *
- 0 if {@link #equals(double, double, double) equals(x, y, eps)}
*- < 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x < y
> 0 if !{@link #equals(double, double, double) equals(x, y, eps)} && x > y* Two NaNs are considered equals, as are two infinities with same sign. * * * @param x first value * @param y second value * @param eps the amount of absolute error to allow * @return true if the values are equal or within range of each other */ public static boolean equals(final double x, final double y, final double eps) { return equals(x, y) || Math.abs(y - x) <= eps; } /** * Returns true iff both arguments are equal or within the range of allowed * error (inclusive). * Adapted from * Bruce Dawson * * @param x first value * @param y second value * @param maxUlps {@code (maxUlps - 1)} is the number of floating point * values between {@code x} and {@code y}. * @return {@code true} if there are less than {@code maxUlps} floating * point values between {@code x} and {@code y} */ public static boolean equals(final double x, final double y, final int maxUlps) { // Check that "maxUlps" is non-negative and small enough so that the // default NAN won't compare as equal to anything. assert maxUlps > 0 && maxUlps < NAN_GAP; long xInt = Double.doubleToLongBits(x); long yInt = Double.doubleToLongBits(y); // Make lexicographically ordered as a two's-complement integer. if (xInt < 0) { xInt = SGN_MASK - xInt; } if (yInt < 0) { yInt = SGN_MASK - yInt; } return Math.abs(xInt - yInt) <= maxUlps; } /** * Returns true iff both arguments are null or have same dimensions * and all their elements are {@link #equals(double, double) equals} * * @param x first array * @param y second array * @return true if the values are both null or have same dimension * and equal elements * @since 1.2 */ public static boolean equals(final double[] x, final double[] y) { if (x == null || y == null) { return !(x == null ^ y == null); } if (x.length != y.length) { return false; } for (int i = 0; i < x.length; ++i) { if (!equals(x[i], y[i])) { return false; } } return true; } /** * Returns n!. Shorthand for
n
Factorial, the * product of the numbers1,...,n
. ** Preconditions: *
*
- *
n >= 0
(otherwise *IllegalArgumentException
is thrown)- The result is small enough to fit into a
long
. The * largest value ofn
for whichn!
< * Long.MAX_VALUELong.MAX_VALUE
* anArithMeticException
is thrown. * * * * @param n argument * @returnn!
* @throws ArithmeticException if the result is too large to be represented * by a long integer. * @throws IllegalArgumentException if n < 0 */ public static long factorial(final int n) { if (n < 0) { throw MathRuntimeException.createIllegalArgumentException( "must have n >= 0 for n!, got n = {0}", n); } if (n > 20) { throw new ArithmeticException( "factorial value is too large to fit in a long"); } return FACTORIALS[n]; } /** * Returns n!. Shorthand forn
Factorial, the * product of the numbers1,...,n
as adouble
. ** Preconditions: *
-
*
-
n >= 0
(otherwise *IllegalArgumentException
is thrown)
* - The result is small enough to fit into a
double
. The * largest value ofn
for whichn!
< * Double.MAX_VALUE is 170. If the computed value exceeds * Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned
*
n!
* @throws IllegalArgumentException if n < 0
*/
public static double factorialDouble(final int n) {
if (n < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"must have n >= 0 for n!, got n = {0}",
n);
}
if (n < 21) {
return factorial(n);
}
return Math.floor(Math.exp(factorialLog(n)) + 0.5);
}
/**
* Returns the natural logarithm of n!.
* * Preconditions: *
-
*
-
n >= 0
(otherwise *IllegalArgumentException
is thrown)
*
n!
* @throws IllegalArgumentException if preconditions are not met.
*/
public static double factorialLog(final int n) {
if (n < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"must have n >= 0 for n!, got n = {0}",
n);
}
if (n < 21) {
return Math.log(factorial(n));
}
double logSum = 0;
for (int i = 2; i <= n; i++) {
logSum += Math.log(i);
}
return logSum;
}
/**
* * Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). * * Special cases: *
-
*
- The invocations
*
gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)
, *gcd(Integer.MIN_VALUE, 0)
and *gcd(0, Integer.MIN_VALUE)
throw an *ArithmeticException
, because the result would be 2^31, which * is too large for an int value.
* - The result of
gcd(x, x)
,gcd(0, x)
and *gcd(x, 0)
is the absolute value ofx
, except * for the special cases above. * - The invocation
gcd(0, 0)
is the only one which returns *0
.
*
* Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). * * Special cases: *
-
*
- The invocations
*
gcd(Long.MIN_VALUE, Long.MIN_VALUE)
, *gcd(Long.MIN_VALUE, 0L)
and *gcd(0L, Long.MIN_VALUE)
throw an *ArithmeticException
, because the result would be 2^63, which * is too large for a long value.
* - The result of
gcd(x, x)
,gcd(0L, x)
and *gcd(x, 0L)
is the absolute value ofx
, except * for the special cases above. * - The invocation
gcd(0L, 0L)
is the only one which returns *0L
.
*
NaN
if x
is
* NaN
.
*
* @param x the value, a double
* @return +1.0 or -1.0, depending on the sign of x
*/
public static double indicator(final double x) {
if (Double.isNaN(x)) {
return Double.NaN;
}
return x >= 0.0 ? 1.0 : -1.0;
}
/**
* For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x <
* 0. Returns NaN
if x
is NaN
.
*
* @param x the value, a float
* @return +1.0F or -1.0F, depending on the sign of x
*/
public static float indicator(final float x) {
if (Float.isNaN(x)) {
return Float.NaN;
}
return x >= 0.0F ? 1.0F : -1.0F;
}
/**
* For an int value x, this method returns +1 if x >= 0 and -1 if x < 0.
*
* @param x the value, an int
* @return +1 or -1, depending on the sign of x
*/
public static int indicator(final int x) {
return x >= 0 ? 1 : -1;
}
/**
* For a long value x, this method returns +1L if x >= 0 and -1L if x < 0.
*
* @param x the value, a long
* @return +1L or -1L, depending on the sign of x
*/
public static long indicator(final long x) {
return x >= 0L ? 1L : -1L;
}
/**
* For a short value x, this method returns (short)(+1) if x >= 0 and
* (short)(-1) if x < 0.
*
* @param x the value, a short
* @return (short)(+1) or (short)(-1), depending on the sign of x
*/
public static short indicator(final short x) {
return x >= ZS ? PS : NS;
}
/**
*
* Returns the least common multiple of the absolute value of two numbers,
* using the formula lcm(a,b) = (a / gcd(a,b)) * b
.
*
* Special cases:
*
-
*
- The invocations
lcm(Integer.MIN_VALUE, n)
and *lcm(n, Integer.MIN_VALUE)
, whereabs(n)
is a * power of 2, throw anArithmeticException
, because the result * would be 2^31, which is too large for an int value.
* - The result of
lcm(0, x)
andlcm(x, 0)
is *0
for anyx
. *
* Returns the least common multiple of the absolute value of two numbers,
* using the formula lcm(a,b) = (a / gcd(a,b)) * b
.
*
* Special cases:
*
-
*
- The invocations
lcm(Long.MIN_VALUE, n)
and *lcm(n, Long.MIN_VALUE)
, whereabs(n)
is a * power of 2, throw anArithmeticException
, because the result * would be 2^63, which is too large for an int value.
* - The result of
lcm(0L, x)
andlcm(x, 0L)
is *0L
for anyx
. *
Returns the
* logarithm
* for base b
of x
.
*
*
Returns NaN
if either argument is negative. If
*
base
is 0 and x
is positive, 0 is returned.
* If base
is positive and x
is 0,
* Double.NEGATIVE_INFINITY
is returned. If both arguments
* are 0, the result is NaN
.
x*y
* @throws ArithmeticException if the result can not be represented as an
* int
* @since 1.1
*/
public static int mulAndCheck(final int x, final int y) {
final long m = (long) x * (long) y;
if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: mul");
}
return (int) m;
}
/**
* Multiply two long integers, checking for overflow.
*
* @param a first value
* @param b second value
* @return the product a * b
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
public static long mulAndCheck(final long a, final long b) {
final long ret;
final String msg = "overflow: multiply";
if (a > b) {
// use symmetry to reduce boundary cases
ret = mulAndCheck(b, a);
} else {
if (a < 0) {
if (b < 0) {
// check for positive overflow with negative a, negative b
if (a >= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else if (b > 0) {
// check for negative overflow with negative a, positive b
if (Long.MIN_VALUE / b <= a) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else {
// assert b == 0
ret = 0;
}
} else if (a > 0) {
// assert a > 0
// assert b > 0
// check for positive overflow with positive a, positive b
if (a <= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else {
// assert a == 0
ret = 0;
}
}
return ret;
}
/**
* Get the next machine representable number after a number, moving
* in the direction of another number.
*
* If direction
is greater than or equal tod
,
* the smallest machine representable number strictly greater than
* d
is returned; otherwise the largest representable number
* strictly less than d
is returned.
* If d
is NaN or Infinite, it is returned unchanged.
If d
is 0 or NaN or Infinite, it is returned unchanged.
This method has three main uses:
*-
*
- normalize an angle between 0 and 2π:
*a = MathUtils.normalizeAngle(a, Math.PI);
* - normalize an angle between -π and +π
*a = MathUtils.normalizeAngle(a, 0.0);
* - compute the angle between two defining angular positions:
*angle = MathUtils.normalizeAngle(end, start) - start;
*
Note that due to numerical accuracy and since π cannot be represented * exactly, the result interval is closed, it cannot be half-closed * as would be more satisfactory in a purely mathematical view.
* * @param a angle to normalize * @param center center of the desired 2π interval for the result * @return a-2kπ with integer k and center-π <= a-2kπ <= center+π * @since 1.2 */ public static double normalizeAngle(final double a, final double center) { return a - TWO_PI * Math.floor((a + Math.PI - center) / TWO_PI); } /** *Normalizes an array to make it sum to a specified value. * Returns the result of the transformation
* x |-> x * normalizedSum / sum ** applied to each non-NaN element x of the input array, where sum is the * sum of the non-NaN entries in the input array. * *
Throws IllegalArgumentException if normalizedSum
is infinite
* or NaN and ArithmeticException if the input array contains any infinite elements
* or sums to 0
Ignores (i.e., copies unchanged to the output array) NaNs in the input array.
* * @param values input array to be normalized * @param normalizedSum target sum for the normalized array * @return normalized array * @throws ArithmeticException if the input array contains infinite elements or sums to zero * @throws IllegalArgumentException if the target sum is infinite or NaN * @since 2.1 */ public static double[] normalizeArray(final double[] values, final double normalizedSum) throws ArithmeticException, IllegalArgumentException { if (Double.isInfinite(normalizedSum)) { throw MathRuntimeException.createIllegalArgumentException( "Cannot normalize to an infinite value"); } if (Double.isNaN(normalizedSum)) { throw MathRuntimeException.createIllegalArgumentException( "Cannot normalize to NaN"); } double sum = 0d; final int len = values.length; final double[] out = new double[len]; for (int i = 0; i < len; i++) { if (Double.isInfinite(values[i])) { throw MathRuntimeException.createArithmeticException( "Array contains an infinite element, {0} at index {1}", values[i], i); } if (!Double.isNaN(values[i])) { sum += values[i]; } } if (sum == 0) { throw MathRuntimeException.createArithmeticException( "Array sums to zero"); } for (int i = 0; i < len; i++) { if (Double.isNaN(values[i])) { out[i] = Double.NaN; } else { out[i] = values[i] * normalizedSum / sum; } } return out; } /** * Round the given value to the specified number of decimal places. The * value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 */ public static double round(final double x, final int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Round the given value to the specified number of decimal places. The * value is rounded using the given method which is any method defined in * {@link BigDecimal}. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ public static double round(final double x, final int scale, final int roundingMethod) { try { return new BigDecimal (Double.toString(x)) .setScale(scale, roundingMethod) .doubleValue(); } catch (final NumberFormatException ex) { if (Double.isInfinite(x)) { return x; } else { return Double.NaN; } } } /** * Round the given value to the specified number of decimal places. The * value is rounding using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 */ public static float round(final float x, final int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Round the given value to the specified number of decimal places. The * value is rounded using the given method which is any method defined in * {@link BigDecimal}. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ public static float round(final float x, final int scale, final int roundingMethod) { final float sign = indicator(x); final float factor = (float) Math.pow(10.0f, scale) * sign; return (float) roundUnscaled(x * factor, sign, roundingMethod) / factor; } /** * Round the given non-negative, value to the "nearest" integer. Nearest is * determined by the rounding method specified. Rounding methods are defined * in {@link BigDecimal}. * * @param unscaled the value to round. * @param sign the sign of the original, scaled value. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ private static double roundUnscaled(double unscaled, final double sign, final int roundingMethod) { switch (roundingMethod) { case BigDecimal.ROUND_CEILING: if (sign == -1) { unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } else { unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); } break; case BigDecimal.ROUND_DOWN: unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); break; case BigDecimal.ROUND_FLOOR: if (sign == -1) { unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); } else { unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } break; case BigDecimal.ROUND_HALF_DOWN: { unscaled = nextAfter(unscaled, Double.NEGATIVE_INFINITY); final double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) { unscaled = Math.ceil(unscaled); } else { unscaled = Math.floor(unscaled); } break; } case BigDecimal.ROUND_HALF_EVEN: { final double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) { unscaled = Math.ceil(unscaled); } else if (fraction < 0.5) { unscaled = Math.floor(unscaled); } else { // The following equality test is intentional and needed for rounding purposes if (Math.floor(unscaled) / 2.0 == Math.floor(Math .floor(unscaled) / 2.0)) { // even unscaled = Math.floor(unscaled); } else { // odd unscaled = Math.ceil(unscaled); } } break; } case BigDecimal.ROUND_HALF_UP: { unscaled = nextAfter(unscaled, Double.POSITIVE_INFINITY); final double fraction = unscaled - Math.floor(unscaled); if (fraction >= 0.5) { unscaled = Math.ceil(unscaled); } else { unscaled = Math.floor(unscaled); } break; } case BigDecimal.ROUND_UNNECESSARY: if (unscaled != Math.floor(unscaled)) { throw new ArithmeticException("Inexact result from rounding"); } break; case BigDecimal.ROUND_UP: unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); break; default: throw MathRuntimeException.createIllegalArgumentException( "invalid rounding method {0}, valid methods: {1} ({2}), {3} ({4})," + " {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16})", roundingMethod, "ROUND_CEILING", BigDecimal.ROUND_CEILING, "ROUND_DOWN", BigDecimal.ROUND_DOWN, "ROUND_FLOOR", BigDecimal.ROUND_FLOOR, "ROUND_HALF_DOWN", BigDecimal.ROUND_HALF_DOWN, "ROUND_HALF_EVEN", BigDecimal.ROUND_HALF_EVEN, "ROUND_HALF_UP", BigDecimal.ROUND_HALF_UP, "ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY, "ROUND_UP", BigDecimal.ROUND_UP); } return unscaled; } /** * Returns the sign * for byte valuex
.
* * For a byte value x, this method returns (byte)(+1) if x > 0, (byte)(0) if * x = 0, and (byte)(-1) if x < 0.
* * @param x the value, a byte * @return (byte)(+1), (byte)(0), or (byte)(-1), depending on the sign of x */ public static byte sign(final byte x) { return x == ZB ? ZB : x > ZB ? PB : NB; } /** * Returns the sign * for double precisionx
.
*
* For a double value x
, this method returns
* +1.0
if x > 0
, 0.0
if
* x = 0.0
, and -1.0
if x < 0
.
* Returns NaN
if x
is NaN
.
x
.
*
* For a float value x, this method returns +1.0F if x > 0, 0.0F if x =
* 0.0F, and -1.0F if x < 0. Returns NaN
if x
* is NaN
.
x
.
* * For an int value x, this method returns +1 if x > 0, 0 if x = 0, and -1 * if x < 0.
* * @param x the value, an int * @return +1, 0, or -1, depending on the sign of x */ public static int sign(final int x) { return Integer.compare(x, 0); } /** * Returns the sign * for long valuex
.
* * For a long value x, this method returns +1L if x > 0, 0L if x = 0, and * -1L if x < 0.
* * @param x the value, a long * @return +1L, 0L, or -1L, depending on the sign of x */ public static long sign(final long x) { return x == 0L ? 0L : x > 0L ? 1L : -1L; } /** * Returns the sign * for short valuex
.
* * For a short value x, this method returns (short)(+1) if x > 0, (short)(0) * if x = 0, and (short)(-1) if x < 0.
* * @param x the value, a short * @return (short)(+1), (short)(0), or (short)(-1), depending on the sign of * x */ public static short sign(final short x) { return x == ZS ? ZS : x > ZS ? PS : NS; } /** * Returns the * hyperbolic sine of x. * * @param x double value for which to find the hyperbolic sine * @return hyperbolic sine of x */ public static double sinh(final double x) { return (Math.exp(x) - Math.exp(-x)) / 2.0; } /** * Subtract two integers, checking for overflow. * * @param x the minuend * @param y the subtrahend * @return the differencex-y
* @throws ArithmeticException if the result can not be represented as an
* int
* @since 1.1
*/
public static int subAndCheck(final int x, final int y) {
final long s = (long) x - (long) y;
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: subtract");
}
return (int) s;
}
/**
* Subtract two long integers, checking for overflow.
*
* @param a first value
* @param b second value
* @return the difference a-b
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
public static long subAndCheck(final long a, final long b) {
final long ret;
final String msg = "overflow: subtract";
if (b == Long.MIN_VALUE) {
if (a < 0) {
ret = a - b;
} else {
throw new ArithmeticException(msg);
}
} else {
// use additive inverse
ret = addAndCheck(a, -b, msg);
}
return ret;
}
/**
* Raise an int to an int power.
*
* @param k number to raise
* @param e exponent (must be positive or null)
* @return ke
* @throws IllegalArgumentException if e is negative
*/
public static int pow(final int k, int e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot raise an integral value to a negative power ({0}^{1})",
k, e);
}
int result = 1;
int k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise an int to a long power.
*
* @param k number to raise
* @param e exponent (must be positive or null)
* @return ke
* @throws IllegalArgumentException if e is negative
*/
public static int pow(final int k, long e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot raise an integral value to a negative power ({0}^{1})",
k, e);
}
int result = 1;
int k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise a long to an int power.
*
* @param k number to raise
* @param e exponent (must be positive or null)
* @return ke
* @throws IllegalArgumentException if e is negative
*/
public static long pow(final long k, int e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot raise an integral value to a negative power ({0}^{1})",
k, e);
}
long result = 1L;
long k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise a long to a long power.
*
* @param k number to raise
* @param e exponent (must be positive or null)
* @return ke
* @throws IllegalArgumentException if e is negative
*/
public static long pow(final long k, long e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot raise an integral value to a negative power ({0}^{1})",
k, e);
}
long result = 1L;
long k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result *= k2p;
}
k2p *= k2p;
e = e >> 1;
}
return result;
}
/**
* Raise a BigInteger to an int power.
*
* @param k number to raise
* @param e exponent (must be positive or null)
* @return ke
* @throws IllegalArgumentException if e is negative
*/
public static BigInteger pow(final BigInteger k, final int e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot raise an integral value to a negative power ({0}^{1})",
k, e);
}
return k.pow(e);
}
/**
* Raise a BigInteger to a long power.
*
* @param k number to raise
* @param e exponent (must be positive or null)
* @return ke
* @throws IllegalArgumentException if e is negative
*/
public static BigInteger pow(final BigInteger k, long e)
throws IllegalArgumentException {
if (e < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot raise an integral value to a negative power ({0}^{1})",
k, e);
}
BigInteger result = BigInteger.ONE;
BigInteger k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {
result = result.multiply(k2p);
}
k2p = k2p.multiply(k2p);
e = e >> 1;
}
return result;
}
/**
* Raise a BigInteger to a BigInteger power.
*
* @param k number to raise
* @param e exponent (must be positive or null)
* @return ke
* @throws IllegalArgumentException if e is negative
*/
public static BigInteger pow(final BigInteger k, BigInteger e)
throws IllegalArgumentException {
if (e.compareTo(BigInteger.ZERO) < 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot raise an integral value to a negative power ({0}^{1})",
k, e);
}
BigInteger result = BigInteger.ONE;
BigInteger k2p = k;
while (!BigInteger.ZERO.equals(e)) {
if (e.testBit(0)) {
result = result.multiply(k2p);
}
k2p = k2p.multiply(k2p);
e = e.shiftRight(1);
}
return result;
}
/**
* Calculates the L1 (sum of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L1 distance between the two points
*/
public static double distance1(final double[] p1, final double[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += Math.abs(p1[i] - p2[i]);
}
return sum;
}
/**
* Calculates the L1 (sum of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L1 distance between the two points
*/
public static int distance1(final int[] p1, final int[] p2) {
int sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += Math.abs(p1[i] - p2[i]);
}
return sum;
}
/**
* Calculates the L2 (Euclidean) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L2 distance between the two points
*/
public static double distance(final double[] p1, final double[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return Math.sqrt(sum);
}
/**
* Calculates the L2 (Euclidean) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L2 distance between the two points
*/
public static double distance(final int[] p1, final int[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return Math.sqrt(sum);
}
/**
* Calculates the L∞ (max of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L∞ distance between the two points
*/
public static double distanceInf(final double[] p1, final double[] p2) {
double max = 0;
for (int i = 0; i < p1.length; i++) {
max = Math.max(max, Math.abs(p1[i] - p2[i]));
}
return max;
}
/**
* Calculates the L∞ (max of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L∞ distance between the two points
*/
public static int distanceInf(final int[] p1, final int[] p2) {
int max = 0;
for (int i = 0; i < p1.length; i++) {
max = Math.max(max, Math.abs(p1[i] - p2[i]));
}
return max;
}
/**
* Checks that the given array is sorted.
*
* @param val Values
* @param dir Order direction (-1 for decreasing, 1 for increasing)
* @param strict Whether the order should be strict
* @throws IllegalArgumentException if the array is not sorted.
*/
public static void checkOrder(final double[] val, final int dir, final boolean strict) {
double previous = val[0];
final int max = val.length;
for (int i = 1; i < max; i++) {
if (dir > 0) {
if (strict) {
if (val[i] <= previous) {
throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not strictly increasing ({2} >= {3})",
i - 1, i, previous, val[i]);
}
} else {
if (val[i] < previous) {
throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not increasing ({2} > {3})",
i - 1, i, previous, val[i]);
}
}
} else {
if (strict) {
if (val[i] >= previous) {
throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not strictly decreasing ({2} <= {3})",
i - 1, i, previous, val[i]);
}
} else {
if (val[i] > previous) {
throw MathRuntimeException.createIllegalArgumentException("points {0} and {1} are not decreasing ({2} < {3})",
i - 1, i, previous, val[i]);
}
}
}
previous = val[i];
}
}
}