org.apache.wayang.apps.sgd.SGD.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.wayang.apps.sgd
import org.apache.wayang.apps.util.{ExperimentDescriptor, Parameters, ProfileDBHelper}
import org.apache.wayang.apps.util.ProfileDBHelper
import org.apache.wayang.core.api.Configuration
/**
* Companion for the [[SGDImpl]] class.
*/
object SGD extends ExperimentDescriptor {
override def version = "1.0"
def main(args: Array[String]): Unit = {
// Parse args.
if (args.isEmpty) {
println(s"Usage: scala ${Parameters.experimentHelp} " +
s" <#features> ")
sys.exit(1)
}
implicit val experiment = Parameters.createExperiment(args(0), this)
implicit val configuration = new Configuration
val plugins = Parameters.loadPlugins(args(1))
experiment.getSubject.addConfiguration("plugins", args(1))
val aggregationType = args(2)
experiment.getSubject.addConfiguration("aggregationType", aggregationType)
val datasetUrl = args(3)
experiment.getSubject.addConfiguration("input", datasetUrl)
val datasetSize = args(4).toInt
experiment.getSubject.addConfiguration("inputSize", datasetSize)
val numFeatures = args(5).toInt
experiment.getSubject.addConfiguration("features", numFeatures)
val maxIterations = args(6).toInt
experiment.getSubject.addConfiguration("maxIterations", maxIterations)
val accuracy = args(7).toDouble
experiment.getSubject.addConfiguration("accuracy", accuracy)
val sampleSize = args(8).toInt
experiment.getSubject.addConfiguration("sampleSize", sampleSize)
var weights: Array[Double] = null
aggregationType match {
case "regular" =>
// Initialize the SGD algorithm.
val sgd = new SGDImpl(configuration, plugins.toArray)
// Run the SGD.
weights = sgd(datasetUrl, datasetSize, numFeatures, maxIterations, accuracy, sampleSize, experiment)
case "preaggregation" =>
// Initialize the SGD algorithm.
val sgd = new SGDImprovedImpl(configuration, plugins.toArray)
// Run the SGD.
weights = sgd(datasetUrl, datasetSize, numFeatures, maxIterations, accuracy, sampleSize, experiment)
case other => sys.error("Unknown aggregation type: " + other)
}
// Store experiment data.
ProfileDBHelper.store(experiment, configuration)
// Print the result.
if (weights != null) println(s"Determined weights: ${weights.map(w => f"$w%,.5f").mkString(", ")}")
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy