All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.wayang.apps.sgd.SGD.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.wayang.apps.sgd

import org.apache.wayang.apps.util.{ExperimentDescriptor, Parameters, ProfileDBHelper}
import org.apache.wayang.apps.util.ProfileDBHelper
import org.apache.wayang.core.api.Configuration

/**
  * Companion for the [[SGDImpl]] class.
  */
object SGD extends ExperimentDescriptor {

  override def version = "1.0"

  def main(args: Array[String]): Unit = {
    // Parse args.
    if (args.isEmpty) {
      println(s"Usage: scala 
${Parameters.experimentHelp} " + s" <#features> ") sys.exit(1) } implicit val experiment = Parameters.createExperiment(args(0), this) implicit val configuration = new Configuration val plugins = Parameters.loadPlugins(args(1)) experiment.getSubject.addConfiguration("plugins", args(1)) val aggregationType = args(2) experiment.getSubject.addConfiguration("aggregationType", aggregationType) val datasetUrl = args(3) experiment.getSubject.addConfiguration("input", datasetUrl) val datasetSize = args(4).toInt experiment.getSubject.addConfiguration("inputSize", datasetSize) val numFeatures = args(5).toInt experiment.getSubject.addConfiguration("features", numFeatures) val maxIterations = args(6).toInt experiment.getSubject.addConfiguration("maxIterations", maxIterations) val accuracy = args(7).toDouble experiment.getSubject.addConfiguration("accuracy", accuracy) val sampleSize = args(8).toInt experiment.getSubject.addConfiguration("sampleSize", sampleSize) var weights: Array[Double] = null aggregationType match { case "regular" => // Initialize the SGD algorithm. val sgd = new SGDImpl(configuration, plugins.toArray) // Run the SGD. weights = sgd(datasetUrl, datasetSize, numFeatures, maxIterations, accuracy, sampleSize, experiment) case "preaggregation" => // Initialize the SGD algorithm. val sgd = new SGDImprovedImpl(configuration, plugins.toArray) // Run the SGD. weights = sgd(datasetUrl, datasetSize, numFeatures, maxIterations, accuracy, sampleSize, experiment) case other => sys.error("Unknown aggregation type: " + other) } // Store experiment data. ProfileDBHelper.store(experiment, configuration) // Print the result. if (weights != null) println(s"Determined weights: ${weights.map(w => f"$w%,.5f").mkString(", ")}") } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy