org.apache.wayang.apps.sgd.SGDImpl Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.wayang.apps.sgd;
import org.apache.wayang.api.DataQuantaBuilder;
import org.apache.wayang.api.JavaPlanBuilder;
import org.apache.wayang.basic.data.Tuple2;
import org.apache.wayang.commons.util.profiledb.model.Experiment;
import org.apache.wayang.core.api.Configuration;
import org.apache.wayang.core.api.WayangContext;
import org.apache.wayang.core.function.ExecutionContext;
import org.apache.wayang.core.function.FunctionDescriptor;
import org.apache.wayang.core.plugin.Plugin;
import org.apache.wayang.core.util.WayangCollections;
import org.apache.wayang.core.util.Tuple;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
/**
* This class executes a stochastic gradient descent optimization on Apache Wayang (incubating).
*/
public class SGDImpl {
private final Configuration configuration;
/**
* {@link Plugin}s to use for the SGD.
*/
private final List plugins;
public SGDImpl(Configuration configuration, Plugin[] plugins) {
this.configuration = configuration;
this.plugins = Arrays.asList(plugins);
}
public double[] apply(String datasetUrl,
int datasetSize,
int features,
int maxIterations,
double accuracy,
int sampleSize) {
return this.apply(datasetUrl, datasetSize, features, maxIterations, accuracy, sampleSize, null);
}
public double[] apply(String datasetUrl,
int datasetSize,
int features,
int maxIterations,
double accuracy,
int sampleSize,
Experiment experiment) {
// Initialize the builder.
WayangContext wayangContext = new WayangContext(this.configuration);
for (Plugin plugin : this.plugins) {
wayangContext.withPlugin(plugin);
}
JavaPlanBuilder javaPlanBuilder = new JavaPlanBuilder(wayangContext);
if (experiment != null) javaPlanBuilder.withExperiment(experiment);
javaPlanBuilder.withUdfJarOf(this.getClass());
// Create initial weights.
List weights = Arrays.asList(new double[features]);
final DataQuantaBuilder, double[]> weightsBuilder = javaPlanBuilder
.loadCollection(weights).withName("init weights");
// Load and transform the data.
final DataQuantaBuilder, double[]> transformBuilder = javaPlanBuilder
.readTextFile(datasetUrl).withName("source")
.map(new Transform(features)).withName("transform");
// Do the SGD
Collection results =
weightsBuilder.doWhile(new LoopCondition(accuracy, maxIterations), w -> {
// Sample the data and update the weights.
DataQuantaBuilder, double[]> newWeightsDataset = transformBuilder
.sample(sampleSize).withDatasetSize(datasetSize).withBroadcast(w, "weights")
.map(new ComputeLogisticGradient()).withBroadcast(w, "weights").withName("compute")
.reduce(new Sum()).withName("reduce")
.map(new WeightsUpdate()).withBroadcast(w, "weights").withName("update");
// Calculate the convergence criterion.
DataQuantaBuilder, Tuple2> convergenceDataset = newWeightsDataset
.map(new ComputeNorm()).withBroadcast(w, "weights");
return new Tuple<>(newWeightsDataset, convergenceDataset);
}).withExpectedNumberOfIterations(maxIterations).collect();
// Return the results.
return WayangCollections.getSingleOrNull(results); // null to support experiments with skipped execution
}
}
class Transform implements FunctionDescriptor.SerializableFunction {
int features;
public Transform(int features) {
this.features = features;
}
@Override
public double[] apply(String line) {
String[] pointStr = line.split(",");
double[] point = new double[features + 1];
point[0] = Double.parseDouble(pointStr[0]);
for (int i = 1; i < pointStr.length; i++) {
/* if (pointStr[i].equals("")) {
continue;
}
String kv[] = pointStr[i].split(":", 2);
point[Integer.parseInt(kv[0]) - 1] = Double.parseDouble(kv[1]);*/
point[i] = Double.parseDouble(pointStr[i]);
}
return point;
}
}
class ComputeLogisticGradient implements FunctionDescriptor.ExtendedSerializableFunction {
double[] weights;
@Override
public double[] apply(double[] point) {
double[] gradient = new double[point.length];
double dot = 0;
for (int j = 0; j < weights.length; j++)
dot += weights[j] * point[j + 1];
for (int j = 0; j < weights.length; j++)
gradient[j + 1] = ((1 / (1 + Math.exp(-1 * dot))) - point[0]) * point[j + 1];
gradient[0] = 1; //counter for the step size required in the update
return gradient;
}
@Override
public void open(ExecutionContext executionContext) {
this.weights = (double[]) executionContext.getBroadcast("weights").iterator().next();
}
}
class Sum implements FunctionDescriptor.SerializableBinaryOperator {
@Override
public double[] apply(double[] o, double[] o2) {
double[] g1 = o;
double[] g2 = o2;
if (g2 == null) //samples came from one partition only
return g1;
if (g1 == null) //samples came from one partition only
return g2;
double[] sum = new double[g1.length];
sum[0] = g1[0] + g2[0]; //count
for (int i = 1; i < g1.length; i++)
sum[i] = g1[i] + g2[i];
return sum;
}
}
class WeightsUpdate implements FunctionDescriptor.ExtendedSerializableFunction {
double[] weights;
int current_iteration;
double stepSize = 1;
double regulizer = 0;
public WeightsUpdate() {
}
public WeightsUpdate(double stepSize, double regulizer) {
this.stepSize = stepSize;
this.regulizer = regulizer;
}
@Override
public double[] apply(double[] input) {
double count = input[0];
double alpha = (stepSize / (current_iteration + 1));
double[] newWeights = new double[weights.length];
for (int j = 0; j < weights.length; j++) {
newWeights[j] = (1 - alpha * regulizer) * weights[j] - alpha * (1.0 / count) * input[j + 1];
}
return newWeights;
}
@Override
public void open(ExecutionContext executionContext) {
this.weights = (double[]) executionContext.getBroadcast("weights").iterator().next();
this.current_iteration = executionContext.getCurrentIteration();
}
}
class ComputeNorm implements FunctionDescriptor.ExtendedSerializableFunction> {
double[] previousWeights;
@Override
public Tuple2 apply(double[] weights) {
double normDiff = 0.0;
double normWeights = 0.0;
for (int j = 0; j < weights.length; j++) {
// normDiff += Math.sqrt(Math.pow(Math.abs(weights[j] - input[j]), 2));
normDiff += Math.abs(weights[j] - previousWeights[j]);
// normWeights += Math.sqrt(Math.pow(Math.abs(input[j]), 2));
normWeights += Math.abs(weights[j]);
}
return new Tuple2(normDiff, normWeights);
}
@Override
public void open(ExecutionContext executionContext) {
this.previousWeights = (double[]) executionContext.getBroadcast("weights").iterator().next();
}
}
class LoopCondition implements FunctionDescriptor.ExtendedSerializablePredicate>> {
public double accuracy;
public int max_iterations;
private int current_iteration;
public LoopCondition(double accuracy, int max_iterations) {
this.accuracy = accuracy;
this.max_iterations = max_iterations;
}
@Override
public boolean test(Collection> collection) {
Tuple2 input = WayangCollections.getSingle(collection);
System.out.println("Running iteration: " + current_iteration);
return (input.field0 < accuracy * Math.max(input.field1, 1.0) || current_iteration > max_iterations);
}
@Override
public void open(ExecutionContext executionContext) {
this.current_iteration = executionContext.getCurrentIteration();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy