org.apache.wayang.apps.sgd.SGDImprovedImpl Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.wayang.apps.sgd;
import org.apache.wayang.commons.util.profiledb.model.Experiment;
import org.apache.wayang.api.DataQuantaBuilder;
import org.apache.wayang.api.JavaPlanBuilder;
import org.apache.wayang.basic.data.Tuple2;
import org.apache.wayang.core.api.Configuration;
import org.apache.wayang.core.api.WayangContext;
import org.apache.wayang.core.function.ExecutionContext;
import org.apache.wayang.core.function.FunctionDescriptor;
import org.apache.wayang.core.plugin.Plugin;
import org.apache.wayang.core.util.WayangCollections;
import org.apache.wayang.core.util.Tuple;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;
/**
* This class executes a stochastic gradient descent optimization on Apache Wayang (incubating), just like {@link SGDImpl}. However,
* it used the {@link org.apache.wayang.basic.operators.MapPartitionsOperator} for performance improvements.
*/
public class SGDImprovedImpl {
private final Configuration configuration;
/**
* {@link Plugin}s to use for the SGD.
*/
private final List plugins;
public SGDImprovedImpl(Configuration configuration, Plugin[] plugins) {
this.configuration = configuration;
this.plugins = Arrays.asList(plugins);
}
public double[] apply(String datasetUrl,
int datasetSize,
int features,
int maxIterations,
double accuracy,
int sampleSize) {
return this.apply(datasetUrl, datasetSize, features, maxIterations, accuracy, sampleSize, null);
}
public double[] apply(String datasetUrl,
int datasetSize,
int features,
int maxIterations,
double accuracy,
int sampleSize,
Experiment experiment) {
// Initialize the builder.
WayangContext wayangContext = new WayangContext(this.configuration);
for (Plugin plugin : this.plugins) {
wayangContext.withPlugin(plugin);
}
JavaPlanBuilder javaPlanBuilder = new JavaPlanBuilder(wayangContext);
if (experiment != null) javaPlanBuilder.withExperiment(experiment);
javaPlanBuilder.withUdfJarOf(this.getClass());
// Create initial weights.
List weights = Arrays.asList(new double[features]);
final DataQuantaBuilder, double[]> weightsBuilder = javaPlanBuilder
.loadCollection(weights).withName("init weights");
// Load and transform the data.
final DataQuantaBuilder, double[]> transformBuilder = javaPlanBuilder
.readTextFile(datasetUrl).withName("source")
.mapPartitions(new TransformPerPartition(features)).withName("transform");
// Do the SGD
Collection results =
weightsBuilder.doWhile(new LoopCondition(accuracy, maxIterations), w -> {
// Sample the data and update the weights.
DataQuantaBuilder, double[]> newWeightsDataset = transformBuilder
.sample(sampleSize).withDatasetSize(datasetSize).withBroadcast(w, "weights")
.mapPartitions(new ComputeLogisticGradientPerPartition(features)).withBroadcast(w, "weights").withName("compute")
.reduce(new Sum()).withName("reduce")
.map(new WeightsUpdate()).withBroadcast(w, "weights").withName("update");
// Calculate the convergence criterion.
DataQuantaBuilder, Tuple2> convergenceDataset = newWeightsDataset
.map(new ComputeNorm()).withBroadcast(w, "weights");
return new Tuple<>(newWeightsDataset, convergenceDataset);
}).withExpectedNumberOfIterations(maxIterations).collect();
// Return the results.
return WayangCollections.getSingleOrNull(results); // Support null for when execution is skipped.
}
}
class TransformPerPartition implements FunctionDescriptor.SerializableFunction, Iterable> {
int features;
public TransformPerPartition (int features) {
this.features = features;
}
@Override
public Iterable apply(Iterable lines) {
List list = new ArrayList<>();
lines.forEach(line -> {
String[] pointStr = line.split(" ");
double[] point = new double[features+1];
point[0] = Double.parseDouble(pointStr[0]);
for (int i = 1; i < pointStr.length; i++) {
if (pointStr[i].equals("")) {
continue;
}
String kv[] = pointStr[i].split(":", 2);
point[Integer.parseInt(kv[0])-1] = Double.parseDouble(kv[1]);
}
list.add(point);
});
return list;
}
}
class ComputeLogisticGradientPerPartition implements FunctionDescriptor.ExtendedSerializableFunction, Iterable> {
double[] weights;
double[] sumGradOfPartition;
int features;
public ComputeLogisticGradientPerPartition(int features) {
this.features = features;
sumGradOfPartition = new double[features + 1]; //position 0 is for the count
}
@Override
public Iterable apply(Iterable points) {
List list = new ArrayList<>(1);
points.forEach(point -> {
double dot = 0;
for (int j = 0; j < weights.length; j++)
dot += weights[j] * point[j + 1];
for (int j = 0; j < weights.length; j++)
sumGradOfPartition[j + 1] += ((1 / (1 + Math.exp(-1 * dot))) - point[0]) * point[j + 1];
sumGradOfPartition[0] += 1; //counter for the step size required in the update
});
list.add(sumGradOfPartition);
return list;
}
@Override
public void open(ExecutionContext executionContext) {
this.weights = (double[]) executionContext.getBroadcast("weights").iterator().next();
sumGradOfPartition = new double[features + 1];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy