All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.xmlgraphics.util.dijkstra.DijkstraAlgorithm Maven / Gradle / Ivy

Go to download

Apache XML Graphics Commons is a library that consists of several reusable components used by Apache Batik and Apache FOP. Many of these components can easily be used separately outside the domains of SVG and XSL-FO.

There is a newer version: 2.10
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* $Id: DijkstraAlgorithm.java 1681108 2015-05-22 13:26:12Z ssteiner $ */

package org.apache.xmlgraphics.util.dijkstra;

import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;

/**
 * This is an implementation of Dijkstra's algorithm to find the shortest path for a directed
 * graph with non-negative edge weights.
 * @see WikiPedia on Dijkstra's
 *      Algorithm
 */
public class DijkstraAlgorithm {

    /** Infinity value for distances. */
    public static final int INFINITE = Integer.MAX_VALUE;

    /** Compares penalties between two possible destinations. */
    private final Comparator penaltyComparator = new Comparator() {
        public int compare(Object left, Object right) {
            int leftPenalty = getLowestPenalty((Vertex)left);
            int rightPenalty = getLowestPenalty((Vertex)right);
            if (leftPenalty < rightPenalty) {
                return -1;
            } else if (leftPenalty == rightPenalty) {
                return ((Comparable)left).compareTo(right);
            } else {
                return 1;
            }
        }
    };

    /** The directory of edges */
    private EdgeDirectory edgeDirectory;

    /** The priority queue for all vertices under inspection, ordered by penalties/distances. */
    private TreeSet priorityQueue = new TreeSet(penaltyComparator);
    //Set

    /** The set of vertices for which the lowest penalty has been found. */
    private Set finishedVertices = new java.util.HashSet();
    //Set

    /** The currently known lowest penalties for all vertices. */
    private Map lowestPenalties = new java.util.HashMap();
    //Map

    /** Map of all predecessors in the spanning tree of best routes. */
    private Map predecessors = new java.util.HashMap();
    //Map

    /**
     * Main Constructor.
     * @param edgeDirectory the edge directory this instance should work on
     */
    public DijkstraAlgorithm(EdgeDirectory edgeDirectory) {
        this.edgeDirectory = edgeDirectory;
    }

    /**
     * Returns the penalty between two vertices.
     * @param start the start vertex
     * @param end the end vertex
     * @return the penalty between two vertices, or 0 if no single edge between the two vertices
     *                  exists.
     */
    protected int getPenalty(Vertex start, Vertex end) {
        return this.edgeDirectory.getPenalty(start, end);
    }

    /**
     * Returns an iterator over all valid destinations for a given vertex.
     * @param origin the origin from which to search for destinations
     * @return the iterator over all valid destinations for a given vertex
     */
    protected Iterator getDestinations(Vertex origin) {
        return this.edgeDirectory.getDestinations(origin);
    }

    private void reset() {
        finishedVertices.clear();
        priorityQueue.clear();

        lowestPenalties.clear();
        predecessors.clear();
    }

    /**
     * Run Dijkstra's shortest path algorithm. After this method is finished you can use
     * {@link #getPredecessor(Vertex)} to reconstruct the best/shortest path starting from the
     * destination backwards.
     * @param start the starting vertex
     * @param destination the destination vertex.
     */
    public void execute(Vertex start, Vertex destination) {
        if (start == null || destination == null) {
            throw new NullPointerException("start and destination may not be null");
        }

        reset();
        setShortestDistance(start, 0);
        priorityQueue.add(start);

        // the current node
        Vertex u;

        // extract the vertex with the shortest distance
        while (priorityQueue.size() > 0) {
            u = (Vertex)priorityQueue.first();
            priorityQueue.remove(u);

            if (destination.equals(u)) {
                //Destination reached
                break;
            }

            finishedVertices.add(u);
            relax(u);
        }
    }

    /**
     * Compute new lowest penalties for neighboring vertices. Update the lowest penalties and the
     * predecessor map if a better solution is found.
     * @param u the vertex to process
     */
    private void relax(Vertex u) {
        Iterator iter = getDestinations(u);
        while (iter.hasNext()) {
            Vertex v = (Vertex)iter.next();
            // skip node already settled
            if (isFinished(v)) {
                continue;
            }

            int shortDist = getLowestPenalty(u) + getPenalty(u, v);

            if (shortDist < getLowestPenalty(v)) {
                // assign new shortest distance and mark unsettled
                setShortestDistance(v, shortDist);

                // assign predecessor in shortest path
                setPredecessor(v, u);
            }
        }
    }

    private void setPredecessor(Vertex a, Vertex b) {
        predecessors.put(a, b);
    }

    /**
     * Indicates whether a shortest route to a vertex has been found.
     * @param v the vertex
     * @return true if the shortest route to this vertex has been found.
     */
    private boolean isFinished(Vertex v) {
        return finishedVertices.contains(v);
    }

    private void setShortestDistance(Vertex vertex, int distance) {
        //Remove so it is inserted at the right position after the lowest penalty changes for this
        //vertex.
        priorityQueue.remove(vertex);

        //Update the lowest penalty.
        lowestPenalties.put(vertex, distance);

        //Insert the vertex again at the new position based on the lowest penalty
        priorityQueue.add(vertex);
    }

    /**
     * Returns the lowest penalty from the start point to a given vertex.
     * @param vertex the vertex
     * @return the lowest penalty or {@link DijkstraAlgorithm#INFINITE} if there is no route to
     *         the destination.
     */
    public int getLowestPenalty(Vertex vertex) {
        Integer d = ((Integer)lowestPenalties.get(vertex));
        return (d == null) ? INFINITE : d;
    }

    /**
     * Returns the vertex's predecessor on the shortest path.
     * @param vertex the vertex for which to find the predecessor
     * @return the vertex's predecessor on the shortest path, or
     *         null if there is no route to the destination.
     */
    public Vertex getPredecessor(Vertex vertex) {
        return (Vertex)predecessors.get(vertex);
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy