org.apache.xmlgraphics.image.codec.tiff.TIFFImage Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of xmlgraphics-commons Show documentation
Show all versions of xmlgraphics-commons Show documentation
Apache XML Graphics Commons is a library that consists of several reusable
components used by Apache Batik and Apache FOP. Many of these components
can easily be used separately outside the domains of SVG and XSL-FO.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* $Id: TIFFImage.java 1732018 2016-02-24 04:51:06Z gadams $ */
package org.apache.xmlgraphics.image.codec.tiff;
import java.awt.Rectangle;
import java.awt.Transparency;
import java.awt.color.ColorSpace;
import java.awt.image.ColorModel;
import java.awt.image.ComponentColorModel;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferByte;
import java.awt.image.DataBufferInt;
import java.awt.image.DataBufferShort;
import java.awt.image.DataBufferUShort;
import java.awt.image.IndexColorModel;
import java.awt.image.MultiPixelPackedSampleModel;
import java.awt.image.PixelInterleavedSampleModel;
import java.awt.image.Raster;
import java.awt.image.SampleModel;
import java.awt.image.WritableRaster;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.zip.DataFormatException;
import java.util.zip.Inflater;
import org.apache.xmlgraphics.image.codec.util.PropertyUtil;
import org.apache.xmlgraphics.image.codec.util.SeekableStream;
import org.apache.xmlgraphics.image.rendered.AbstractRed;
import org.apache.xmlgraphics.image.rendered.CachableRed;
// CSOFF: LocalVariableName
// CSOFF: MissingSwitchDefault
// CSOFF: MultipleVariableDeclarations
// CSOFF: OperatorWrap
// CSOFF: WhitespaceAround
public class TIFFImage extends AbstractRed {
// Compression types
public static final int COMP_NONE = 1;
public static final int COMP_FAX_G3_1D = 2;
public static final int COMP_FAX_G3_2D = 3;
public static final int COMP_FAX_G4_2D = 4;
public static final int COMP_LZW = 5;
public static final int COMP_JPEG_OLD = 6;
public static final int COMP_JPEG_TTN2 = 7;
public static final int COMP_PACKBITS = 32773;
public static final int COMP_DEFLATE = 32946;
// Image types
private static final int TYPE_UNSUPPORTED = -1;
private static final int TYPE_BILEVEL = 0;
private static final int TYPE_GRAY_4BIT = 1;
private static final int TYPE_GRAY = 2;
private static final int TYPE_GRAY_ALPHA = 3;
private static final int TYPE_PALETTE = 4;
private static final int TYPE_RGB = 5;
private static final int TYPE_RGB_ALPHA = 6;
private static final int TYPE_YCBCR_SUB = 7;
private static final int TYPE_GENERIC = 8;
// Incidental tags
private static final int TIFF_JPEG_TABLES = 347;
private static final int TIFF_YCBCR_SUBSAMPLING = 530;
SeekableStream stream;
int tileSize;
int tilesX;
int tilesY;
long[] tileOffsets;
long[] tileByteCounts;
char[] colormap;
int sampleSize;
int compression;
byte[] palette;
int numBands;
int chromaSubH;
int chromaSubV;
// Fax compression related variables
long tiffT4Options;
long tiffT6Options;
int fillOrder;
// LZW compression related variable
int predictor;
// DEFLATE variables
Inflater inflater;
// Endian-ness indicator
boolean isBigEndian;
int imageType;
boolean isWhiteZero;
int dataType;
boolean decodePaletteAsShorts;
boolean tiled;
// Decoders
private TIFFFaxDecoder decoder;
private TIFFLZWDecoder lzwDecoder;
/**
* Inflates deflated
into inflated
using the
* Inflater
constructed during class instantiation.
*/
private void inflate(byte[] deflated, byte[] inflated) {
inflater.setInput(deflated);
try {
inflater.inflate(inflated);
} catch (DataFormatException dfe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage17") + ": "
+ dfe.getMessage());
}
inflater.reset();
}
private static SampleModel createPixelInterleavedSampleModel(
int dataType, int tileWidth, int tileHeight, int bands) {
int [] bandOffsets = new int[bands];
for (int i = 0; i < bands; i++) {
bandOffsets[i] = i;
}
return new PixelInterleavedSampleModel(
dataType, tileWidth, tileHeight, bands,
tileWidth * bands, bandOffsets);
}
/**
* Return as a long[] the value of a TIFF_LONG or TIFF_SHORT field.
*/
private long[] getFieldAsLongs(TIFFField field) {
long[] value = null;
if (field.getType() == TIFFField.TIFF_SHORT) {
char[] charValue = field.getAsChars();
value = new long[charValue.length];
for (int i = 0; i < charValue.length; i++) {
value[i] = charValue[i] & 0xffff;
}
} else if (field.getType() == TIFFField.TIFF_LONG) {
value = field.getAsLongs();
} else {
throw new RuntimeException(PropertyUtil.getString("TIFFImage18") + ": "
+ field.getType());
}
return value;
}
/**
* Constructs a TIFFImage that acquires its data from a given
* SeekableStream and reads from a particular IFD of the stream.
* The index of the first IFD is 0.
*
* @param stream the SeekableStream to read from.
* @param param an instance of TIFFDecodeParam, or null.
* @param directory the index of the IFD to read from.
*/
public TIFFImage(SeekableStream stream,
TIFFDecodeParam param,
int directory)
throws IOException {
this.stream = stream;
if (param == null) {
param = new TIFFDecodeParam();
}
decodePaletteAsShorts = param.getDecodePaletteAsShorts();
// Read the specified directory.
TIFFDirectory dir = param.getIFDOffset() == null
? new TIFFDirectory(stream, directory)
: new TIFFDirectory(stream, param.getIFDOffset(),
directory);
// Get the number of samples per pixel
TIFFField sfield = dir.getField(TIFFImageDecoder.TIFF_SAMPLES_PER_PIXEL);
int samplesPerPixel = sfield == null ? 1 : (int)sfield.getAsLong(0);
// Read the TIFF_PLANAR_CONFIGURATION field
TIFFField planarConfigurationField =
dir.getField(TIFFImageDecoder.TIFF_PLANAR_CONFIGURATION);
char[] planarConfiguration = planarConfigurationField == null
? new char[] {1}
: planarConfigurationField.getAsChars();
// Support planar format (band sequential) only for 1 sample/pixel.
if (planarConfiguration[0] != 1 && samplesPerPixel != 1) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage0"));
}
// Read the TIFF_BITS_PER_SAMPLE field
TIFFField bitsField =
dir.getField(TIFFImageDecoder.TIFF_BITS_PER_SAMPLE);
char[] bitsPerSample = null;
if (bitsField != null) {
bitsPerSample = bitsField.getAsChars();
} else {
bitsPerSample = new char[] {1};
// Ensure that all samples have the same bit depth.
for (int i = 1; i < bitsPerSample.length; i++) {
if (bitsPerSample[i] != bitsPerSample[0]) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage1"));
}
}
}
sampleSize = bitsPerSample[0];
// Read the TIFF_SAMPLE_FORMAT tag to see whether the data might be
// signed or floating point
TIFFField sampleFormatField =
dir.getField(TIFFImageDecoder.TIFF_SAMPLE_FORMAT);
char[] sampleFormat = null;
if (sampleFormatField != null) {
sampleFormat = sampleFormatField.getAsChars();
// Check that all the samples have the same format
for (int l = 1; l < sampleFormat.length; l++) {
if (sampleFormat[l] != sampleFormat[0]) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage2"));
}
}
} else {
sampleFormat = new char[] {1};
}
// Set the data type based on the sample size and format.
boolean isValidDataFormat = false;
switch (sampleSize) {
case 1:
case 4:
case 8:
if (sampleFormat[0] != 3) {
// Ignore whether signed or unsigned: treat all as unsigned.
dataType = DataBuffer.TYPE_BYTE;
isValidDataFormat = true;
}
break;
case 16:
if (sampleFormat[0] != 3) {
dataType = sampleFormat[0] == 2
? DataBuffer.TYPE_SHORT : DataBuffer.TYPE_USHORT;
isValidDataFormat = true;
}
break;
case 32:
if (sampleFormat[0] == 3) {
isValidDataFormat = false;
} else {
dataType = DataBuffer.TYPE_INT;
isValidDataFormat = true;
}
break;
}
if (!isValidDataFormat) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage3"));
}
// Figure out what compression if any, is being used.
TIFFField compField = dir.getField(TIFFImageDecoder.TIFF_COMPRESSION);
compression = compField == null ? COMP_NONE : compField.getAsInt(0);
// Get the photometric interpretation.
int photometricType;
TIFFField photometricTypeField = dir.getField(
TIFFImageDecoder.TIFF_PHOTOMETRIC_INTERPRETATION);
if (photometricTypeField == null) {
photometricType = 0; // White is zero
} else {
photometricType = photometricTypeField.getAsInt(0);
}
// Determine which kind of image we are dealing with.
imageType = TYPE_UNSUPPORTED;
switch(photometricType) {
case 0: // WhiteIsZero
isWhiteZero = true;
case 1: // BlackIsZero
if (sampleSize == 1 && samplesPerPixel == 1) {
imageType = TYPE_BILEVEL;
} else if (sampleSize == 4 && samplesPerPixel == 1) {
imageType = TYPE_GRAY_4BIT;
} else if (sampleSize % 8 == 0) {
if (samplesPerPixel == 1) {
imageType = TYPE_GRAY;
} else if (samplesPerPixel == 2) {
imageType = TYPE_GRAY_ALPHA;
} else {
imageType = TYPE_GENERIC;
}
}
break;
case 2: // RGB
if (sampleSize % 8 == 0) {
if (samplesPerPixel == 3) {
imageType = TYPE_RGB;
} else if (samplesPerPixel == 4) {
imageType = TYPE_RGB_ALPHA;
} else {
imageType = TYPE_GENERIC;
}
}
break;
case 3: // RGB Palette
if (samplesPerPixel == 1
&& (sampleSize == 4 || sampleSize == 8 || sampleSize == 16)) {
imageType = TYPE_PALETTE;
}
break;
case 4: // Transparency mask
if (sampleSize == 1 && samplesPerPixel == 1) {
imageType = TYPE_BILEVEL;
}
break;
default: // Other including CMYK, CIE L*a*b*, unknown.
if (sampleSize % 8 == 0) {
imageType = TYPE_GENERIC;
}
}
// Bail out if not one of the supported types.
if (imageType == TYPE_UNSUPPORTED) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage4") + ": "
+ imageType);
}
// Set basic image layout
Rectangle bounds = new Rectangle(
0, 0,
(int)dir.getFieldAsLong(TIFFImageDecoder.TIFF_IMAGE_WIDTH),
(int)dir.getFieldAsLong(TIFFImageDecoder.TIFF_IMAGE_LENGTH));
// Set a preliminary band count. This may be changed later as needed.
numBands = samplesPerPixel;
// Figure out if any extra samples are present.
TIFFField efield = dir.getField(TIFFImageDecoder.TIFF_EXTRA_SAMPLES);
int extraSamples = efield == null ? 0 : (int)efield.getAsLong(0);
int tileWidth;
int tileHeight;
if (dir.getField(TIFFImageDecoder.TIFF_TILE_OFFSETS) != null) {
tiled = true;
// Image is in tiled format
tileWidth =
(int)dir.getFieldAsLong(TIFFImageDecoder.TIFF_TILE_WIDTH);
tileHeight =
(int)dir.getFieldAsLong(TIFFImageDecoder.TIFF_TILE_LENGTH);
tileOffsets =
(dir.getField(TIFFImageDecoder.TIFF_TILE_OFFSETS)).getAsLongs();
tileByteCounts =
getFieldAsLongs(dir.getField(TIFFImageDecoder.TIFF_TILE_BYTE_COUNTS));
} else {
tiled = false;
// Image is in stripped format, looks like tiles to us
// Note: Some legacy files may have tile width and height
// written but use the strip offsets and byte counts fields
// instead of the tile offsets and byte counts. Therefore
// we default here to the tile dimensions if they are written.
tileWidth =
dir.getField(TIFFImageDecoder.TIFF_TILE_WIDTH) != null
? (int)dir.getFieldAsLong(TIFFImageDecoder.TIFF_TILE_WIDTH)
: bounds.width;
TIFFField field =
dir.getField(TIFFImageDecoder.TIFF_ROWS_PER_STRIP);
if (field == null) {
// Default is infinity (2^32 -1), basically the entire image
tileHeight =
dir.getField(TIFFImageDecoder.TIFF_TILE_LENGTH) != null
? (int)dir.getFieldAsLong(TIFFImageDecoder.TIFF_TILE_LENGTH)
: bounds.height;
} else {
long l = field.getAsLong(0);
long infinity = 1;
infinity = (infinity << 32) - 1;
if (l == infinity) {
// 2^32 - 1 (effectively infinity, entire image is 1 strip)
tileHeight = bounds.height;
} else {
tileHeight = (int)l;
}
}
TIFFField tileOffsetsField =
dir.getField(TIFFImageDecoder.TIFF_STRIP_OFFSETS);
if (tileOffsetsField == null) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage5"));
} else {
tileOffsets = getFieldAsLongs(tileOffsetsField);
}
TIFFField tileByteCountsField =
dir.getField(TIFFImageDecoder.TIFF_STRIP_BYTE_COUNTS);
if (tileByteCountsField == null) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage6"));
} else {
tileByteCounts = getFieldAsLongs(tileByteCountsField);
}
}
// Calculate number of tiles and the tileSize in bytes
tilesX = (bounds.width + tileWidth - 1) / tileWidth;
tilesY = (bounds.height + tileHeight - 1) / tileHeight;
tileSize = tileWidth * tileHeight * numBands;
// Check whether big endian or little endian format is used.
isBigEndian = dir.isBigEndian();
TIFFField fillOrderField =
dir.getField(TIFFImageDecoder.TIFF_FILL_ORDER);
if (fillOrderField != null) {
fillOrder = fillOrderField.getAsInt(0);
} else {
// Default Fill Order
fillOrder = 1;
}
switch(compression) {
case COMP_NONE:
case COMP_PACKBITS:
// Do nothing.
break;
case COMP_DEFLATE:
inflater = new Inflater();
break;
case COMP_FAX_G3_1D:
case COMP_FAX_G3_2D:
case COMP_FAX_G4_2D:
if (sampleSize != 1) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage7"));
}
// Fax T.4 compression options
if (compression == 3) {
TIFFField t4OptionsField =
dir.getField(TIFFImageDecoder.TIFF_T4_OPTIONS);
if (t4OptionsField != null) {
tiffT4Options = t4OptionsField.getAsLong(0);
} else {
// Use default value
tiffT4Options = 0;
}
}
// Fax T.6 compression options
if (compression == 4) {
TIFFField t6OptionsField =
dir.getField(TIFFImageDecoder.TIFF_T6_OPTIONS);
if (t6OptionsField != null) {
tiffT6Options = t6OptionsField.getAsLong(0);
} else {
// Use default value
tiffT6Options = 0;
}
}
// Fax encoding, need to create the Fax decoder.
decoder = new TIFFFaxDecoder(fillOrder,
tileWidth, tileHeight);
break;
case COMP_LZW:
// LZW compression used, need to create the LZW decoder.
TIFFField predictorField =
dir.getField(TIFFImageDecoder.TIFF_PREDICTOR);
if (predictorField == null) {
predictor = 1;
} else {
predictor = predictorField.getAsInt(0);
if (predictor != 1 && predictor != 2) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage8"));
}
if (predictor == 2 && sampleSize != 8) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage9"));
}
}
lzwDecoder = new TIFFLZWDecoder(tileWidth, predictor,
samplesPerPixel);
break;
case COMP_JPEG_OLD:
throw new RuntimeException(PropertyUtil.getString("TIFFImage15"));
default:
throw new RuntimeException(PropertyUtil.getString("TIFFImage10") + ": "
+ compression);
}
ColorModel colorModel = null;
SampleModel sampleModel = null;
switch(imageType) {
case TYPE_BILEVEL:
case TYPE_GRAY_4BIT:
sampleModel =
new MultiPixelPackedSampleModel(dataType,
tileWidth,
tileHeight,
sampleSize);
if (imageType == TYPE_BILEVEL) {
byte[] map = new byte[] {(byte)(isWhiteZero ? 255 : 0),
(byte)(isWhiteZero ? 0 : 255)};
colorModel = new IndexColorModel(1, 2, map, map, map);
} else {
byte [] map = new byte[16];
if (isWhiteZero) {
for (int i = 0; i < map.length; i++) {
map[i] = (byte)(255 - (16 * i));
}
} else {
for (int i = 0; i < map.length; i++) {
map[i] = (byte)(16 * i);
}
}
colorModel = new IndexColorModel(4, 16, map, map, map);
}
break;
case TYPE_GRAY:
case TYPE_GRAY_ALPHA:
case TYPE_RGB:
case TYPE_RGB_ALPHA:
// Create a pixel interleaved SampleModel with decreasing
// band offsets.
int[] reverseOffsets = new int[numBands];
for (int i = 0; i < numBands; i++) {
reverseOffsets[i] = numBands - 1 - i;
}
sampleModel = new PixelInterleavedSampleModel(
dataType, tileWidth, tileHeight,
numBands, numBands * tileWidth, reverseOffsets);
if (imageType == TYPE_GRAY) {
colorModel = new ComponentColorModel(
ColorSpace.getInstance(ColorSpace.CS_GRAY),
new int[] {sampleSize}, false, false,
Transparency.OPAQUE, dataType);
} else if (imageType == TYPE_RGB) {
colorModel = new ComponentColorModel(
ColorSpace.getInstance(ColorSpace.CS_sRGB),
new int[] {sampleSize, sampleSize, sampleSize},
false, false, Transparency.OPAQUE, dataType);
} else { // hasAlpha
// Transparency.OPAQUE signifies image data that is
// completely opaque, meaning that all pixels have an alpha
// value of 1.0. So the extra band gets ignored, which is
// what we want.
int transparency = Transparency.OPAQUE;
if (extraSamples == 1) { // associated (premultiplied) alpha
transparency = Transparency.TRANSLUCENT;
} else if (extraSamples == 2) { // unassociated alpha
transparency = Transparency.BITMASK;
}
colorModel =
createAlphaComponentColorModel(dataType,
numBands,
extraSamples == 1,
transparency);
}
break;
case TYPE_GENERIC:
case TYPE_YCBCR_SUB:
// For this case we can't display the image, so we create a
// SampleModel with increasing bandOffsets, and keep the
// ColorModel as null, as there is no appropriate ColorModel.
int[] bandOffsets = new int[numBands];
for (int i = 0; i < numBands; i++) {
bandOffsets[i] = i;
}
sampleModel = new PixelInterleavedSampleModel(
dataType, tileWidth, tileHeight,
numBands, numBands * tileWidth, bandOffsets);
colorModel = null;
break;
case TYPE_PALETTE:
// Get the colormap
TIFFField cfield = dir.getField(TIFFImageDecoder.TIFF_COLORMAP);
if (cfield == null) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage11"));
} else {
colormap = cfield.getAsChars();
}
// Could be either 1 or 3 bands depending on whether we use
// IndexColorModel or not.
if (decodePaletteAsShorts) {
numBands = 3;
// If no SampleFormat tag was specified and if the
// sampleSize is less than or equal to 8, then the
// dataType was initially set to byte, but now we want to
// expand the palette as shorts, so the dataType should
// be ushort.
if (dataType == DataBuffer.TYPE_BYTE) {
dataType = DataBuffer.TYPE_USHORT;
}
// Data will have to be unpacked into a 3 band short image
// as we do not have a IndexColorModel that can deal with
// a colormodel whose entries are of short data type.
sampleModel = createPixelInterleavedSampleModel(
dataType, tileWidth, tileHeight, numBands);
colorModel = new ComponentColorModel(
ColorSpace.getInstance(ColorSpace.CS_sRGB),
new int[] {16, 16, 16}, false, false,
Transparency.OPAQUE, dataType);
} else {
numBands = 1;
if (sampleSize == 4) {
// Pixel data will not be unpacked, will use
// MPPSM to store packed data and
// IndexColorModel to do the unpacking.
sampleModel = new MultiPixelPackedSampleModel(
DataBuffer.TYPE_BYTE, tileWidth, tileHeight,
sampleSize);
} else if (sampleSize == 8) {
sampleModel = createPixelInterleavedSampleModel(
DataBuffer.TYPE_BYTE, tileWidth, tileHeight,
numBands);
} else if (sampleSize == 16) {
// Here datatype has to be unsigned since we
// are storing indices into the
// IndexColorModel palette. Ofcourse the
// actual palette entries are allowed to be
// negative.
dataType = DataBuffer.TYPE_USHORT;
sampleModel = createPixelInterleavedSampleModel(
DataBuffer.TYPE_USHORT, tileWidth, tileHeight,
numBands);
}
int bandLength = colormap.length / 3;
byte[] r = new byte[bandLength];
byte[] g = new byte[bandLength];
byte[] b = new byte[bandLength];
int gIndex = bandLength;
int bIndex = bandLength * 2;
if (dataType == DataBuffer.TYPE_SHORT) {
for (int i = 0; i < bandLength; i++) {
r[i] = param.decodeSigned16BitsTo8Bits(
(short)colormap[i]);
g[i] = param.decodeSigned16BitsTo8Bits(
(short)colormap[gIndex + i]);
b[i] = param.decodeSigned16BitsTo8Bits(
(short)colormap[bIndex + i]);
}
} else {
for (int i = 0; i < bandLength; i++) {
r[i] = param.decode16BitsTo8Bits(
colormap[i] & 0xffff);
g[i] = param.decode16BitsTo8Bits(
colormap[gIndex + i] & 0xffff);
b[i] = param.decode16BitsTo8Bits(
colormap[bIndex + i] & 0xffff);
}
}
colorModel = new IndexColorModel(sampleSize,
bandLength, r, g, b);
}
break;
default:
throw new RuntimeException(PropertyUtil.getString("TIFFImage4") + ": "
+ imageType);
}
Map properties = new HashMap();
// Set a property "tiff_directory".
properties.put("tiff_directory", dir);
// System.out.println("Constructed TIFF");
init((CachableRed)null, bounds, colorModel, sampleModel,
0, 0, properties);
}
/**
* Reads a private IFD from a given offset in the stream. This
* method may be used to obtain IFDs that are referenced
* only by private tag values.
*/
public TIFFDirectory getPrivateIFD(long offset) throws IOException {
return new TIFFDirectory(stream, offset, 0);
}
public WritableRaster copyData(WritableRaster wr) {
copyToRaster(wr);
return wr;
}
/**
* Returns tile (tileX, tileY) as a Raster.
*/
public synchronized Raster getTile(int tileX, int tileY) {
if ((tileX < 0) || (tileX >= tilesX)
|| (tileY < 0) || (tileY >= tilesY)) {
throw new IllegalArgumentException(PropertyUtil.getString("TIFFImage12"));
}
// System.out.println("Called TIFF getTile:" + tileX + "," + tileY);
// Get the data array out of the DataBuffer
byte[] bdata = null;
short[] sdata = null;
int[] idata = null;
SampleModel sampleModel = getSampleModel();
WritableRaster tile = makeTile(tileX, tileY);
DataBuffer buffer = tile.getDataBuffer();
int dataType = sampleModel.getDataType();
if (dataType == DataBuffer.TYPE_BYTE) {
bdata = ((DataBufferByte)buffer).getData();
} else if (dataType == DataBuffer.TYPE_USHORT) {
sdata = ((DataBufferUShort)buffer).getData();
} else if (dataType == DataBuffer.TYPE_SHORT) {
sdata = ((DataBufferShort)buffer).getData();
} else if (dataType == DataBuffer.TYPE_INT) {
idata = ((DataBufferInt)buffer).getData();
}
// Variables used for swapping when converting from RGB to BGR
byte bswap;
short sswap;
int iswap;
// Save original file pointer position and seek to tile data location.
long saveOffset = 0;
try {
saveOffset = stream.getFilePointer();
stream.seek(tileOffsets[tileY * tilesX + tileX]);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
// Number of bytes in this tile (strip) after compression.
int byteCount = (int)tileByteCounts[tileY * tilesX + tileX];
// Find out the number of bytes in the current tile
Rectangle newRect;
if (!tiled) {
newRect = tile.getBounds();
} else {
newRect = new Rectangle(tile.getMinX(), tile.getMinY(),
tileWidth, tileHeight);
}
int unitsInThisTile = newRect.width * newRect.height * numBands;
// Allocate read buffer if needed.
byte[] data = compression != COMP_NONE || imageType == TYPE_PALETTE
? new byte[byteCount] : null;
// Read the data, uncompressing as needed. There are four cases:
// bilevel, palette-RGB, 4-bit grayscale, and everything else.
if (imageType == TYPE_BILEVEL) { // bilevel
try {
if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
// Since the decompressed data will still be packed
// 8 pixels into 1 byte, calculate bytesInThisTile
int bytesInThisTile;
if ((newRect.width % 8) == 0) {
bytesInThisTile = (newRect.width / 8) * newRect.height;
} else {
bytesInThisTile =
(newRect.width / 8 + 1) * newRect.height;
}
decodePackbits(data, bytesInThisTile, bdata);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
lzwDecoder.decode(data, bdata, newRect.height);
} else if (compression == COMP_FAX_G3_1D) {
stream.readFully(data, 0, byteCount);
decoder.decode1D(bdata, data, 0, newRect.height);
} else if (compression == COMP_FAX_G3_2D) {
stream.readFully(data, 0, byteCount);
decoder.decode2D(bdata, data, 0, newRect.height,
tiffT4Options);
} else if (compression == COMP_FAX_G4_2D) {
stream.readFully(data, 0, byteCount);
decoder.decodeT6(bdata, data, 0, newRect.height,
tiffT6Options);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
inflate(data, bdata);
} else if (compression == COMP_NONE) {
stream.readFully(bdata, 0, byteCount);
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
} else if (imageType == TYPE_PALETTE) { // palette-RGB
if (sampleSize == 16) {
if (decodePaletteAsShorts) {
short[] tempData = null;
// At this point the data is 1 banded and will
// become 3 banded only after we've done the palette
// lookup, since unitsInThisTile was calculated with
// 3 bands, we need to divide this by 3.
int unitsBeforeLookup = unitsInThisTile / 3;
// Since unitsBeforeLookup is the number of shorts,
// but we do our decompression in terms of bytes, we
// need to multiply it by 2 in order to figure out
// how many bytes we'll get after decompression.
int entries = unitsBeforeLookup * 2;
// Read the data, if compressed, decode it, reset the pointer
try {
if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
byte[] byteArray = new byte[entries];
decodePackbits(data, entries, byteArray);
tempData = new short[unitsBeforeLookup];
interpretBytesAsShorts(byteArray, tempData,
unitsBeforeLookup);
} else if (compression == COMP_LZW) {
// Read in all the compressed data for this tile
stream.readFully(data, 0, byteCount);
byte[] byteArray = new byte[entries];
lzwDecoder.decode(data, byteArray, newRect.height);
tempData = new short[unitsBeforeLookup];
interpretBytesAsShorts(byteArray, tempData,
unitsBeforeLookup);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
byte[] byteArray = new byte[entries];
inflate(data, byteArray);
tempData = new short[unitsBeforeLookup];
interpretBytesAsShorts(byteArray, tempData,
unitsBeforeLookup);
} else if (compression == COMP_NONE) {
// byteCount tells us how many bytes are there
// in this tile, but we need to read in shorts,
// which will take half the space, so while
// allocating we divide byteCount by 2.
tempData = new short[byteCount / 2];
readShorts(byteCount / 2, tempData);
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
if (dataType == DataBuffer.TYPE_USHORT) {
// Expand the palette image into an rgb image with ushort
// data type.
int cmapValue;
int count = 0;
int lookup;
int len = colormap.length / 3;
int len2 = len * 2;
for (int i = 0; i < unitsBeforeLookup; i++) {
// Get the index into the colormap
lookup = tempData[i] & 0xffff;
// Get the blue value
cmapValue = colormap[lookup + len2];
sdata[count++] = (short)(cmapValue & 0xffff);
// Get the green value
cmapValue = colormap[lookup + len];
sdata[count++] = (short)(cmapValue & 0xffff);
// Get the red value
cmapValue = colormap[lookup];
sdata[count++] = (short)(cmapValue & 0xffff);
}
} else if (dataType == DataBuffer.TYPE_SHORT) {
// Expand the palette image into an rgb image with
// short data type.
int cmapValue;
int count = 0;
int lookup;
int len = colormap.length / 3;
int len2 = len * 2;
for (int i = 0; i < unitsBeforeLookup; i++) {
// Get the index into the colormap
lookup = tempData[i] & 0xffff;
// Get the blue value
cmapValue = colormap[lookup + len2];
sdata[count++] = (short)cmapValue;
// Get the green value
cmapValue = colormap[lookup + len];
sdata[count++] = (short)cmapValue;
// Get the red value
cmapValue = colormap[lookup];
sdata[count++] = (short)cmapValue;
}
}
} else {
// No lookup being done here, when RGB values are needed,
// the associated IndexColorModel can be used to get them.
try {
if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
// Since unitsInThisTile is the number of shorts,
// but we do our decompression in terms of bytes, we
// need to multiply unitsInThisTile by 2 in order to
// figure out how many bytes we'll get after
// decompression.
int bytesInThisTile = unitsInThisTile * 2;
byte[] byteArray = new byte[bytesInThisTile];
decodePackbits(data, bytesInThisTile, byteArray);
interpretBytesAsShorts(byteArray, sdata,
unitsInThisTile);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
// Since unitsInThisTile is the number of shorts,
// but we do our decompression in terms of bytes, we
// need to multiply unitsInThisTile by 2 in order to
// figure out how many bytes we'll get after
// decompression.
byte[] byteArray = new byte[unitsInThisTile * 2];
lzwDecoder.decode(data, byteArray, newRect.height);
interpretBytesAsShorts(byteArray, sdata,
unitsInThisTile);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
byte[] byteArray = new byte[unitsInThisTile * 2];
inflate(data, byteArray);
interpretBytesAsShorts(byteArray, sdata,
unitsInThisTile);
} else if (compression == COMP_NONE) {
readShorts(byteCount / 2, sdata);
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
}
} else if (sampleSize == 8) {
if (decodePaletteAsShorts) {
byte[] tempData = null;
// At this point the data is 1 banded and will
// become 3 banded only after we've done the palette
// lookup, since unitsInThisTile was calculated with
// 3 bands, we need to divide this by 3.
int unitsBeforeLookup = unitsInThisTile / 3;
// Read the data, if compressed, decode it, reset the pointer
try {
if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
tempData = new byte[unitsBeforeLookup];
decodePackbits(data, unitsBeforeLookup, tempData);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
tempData = new byte[unitsBeforeLookup];
lzwDecoder.decode(data, tempData, newRect.height);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
tempData = new byte[unitsBeforeLookup];
inflate(data, tempData);
} else if (compression == COMP_NONE) {
tempData = new byte[byteCount];
stream.readFully(tempData, 0, byteCount);
} else {
throw new RuntimeException(PropertyUtil.getString("IFFImage10") + ": "
+ compression);
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
// Expand the palette image into an rgb image with ushort
// data type.
int cmapValue;
int count = 0;
int lookup;
int len = colormap.length / 3;
int len2 = len * 2;
for (int i = 0; i < unitsBeforeLookup; i++) {
// Get the index into the colormap
lookup = tempData[i] & 0xff;
// Get the blue value
cmapValue = colormap[lookup + len2];
sdata[count++] = (short)(cmapValue & 0xffff);
// Get the green value
cmapValue = colormap[lookup + len];
sdata[count++] = (short)(cmapValue & 0xffff);
// Get the red value
cmapValue = colormap[lookup];
sdata[count++] = (short)(cmapValue & 0xffff);
}
} else {
// No lookup being done here, when RGB values are needed,
// the associated IndexColorModel can be used to get them.
try {
if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
decodePackbits(data, unitsInThisTile, bdata);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
lzwDecoder.decode(data, bdata, newRect.height);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
inflate(data, bdata);
} else if (compression == COMP_NONE) {
stream.readFully(bdata, 0, byteCount);
} else {
throw new RuntimeException(PropertyUtil.getString("TIFFImage10")
+ ": " + compression);
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
}
} else if (sampleSize == 4) {
int padding = (newRect.width % 2 == 0) ? 0 : 1;
int bytesPostDecoding = ((newRect.width / 2 + padding) * newRect.height);
// Output short images
if (decodePaletteAsShorts) {
byte[] tempData = null;
try {
stream.readFully(data, 0, byteCount);
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
// If compressed, decode the data.
if (compression == COMP_PACKBITS) {
tempData = new byte[bytesPostDecoding];
decodePackbits(data, bytesPostDecoding, tempData);
} else if (compression == COMP_LZW) {
tempData = new byte[bytesPostDecoding];
lzwDecoder.decode(data, tempData, newRect.height);
} else if (compression == COMP_DEFLATE) {
tempData = new byte[bytesPostDecoding];
inflate(data, tempData);
} else if (compression == COMP_NONE) {
tempData = data;
}
int bytes = unitsInThisTile / 3;
// Unpack the 2 pixels packed into each byte.
data = new byte[bytes];
int srcCount = 0;
int dstCount = 0;
for (int j = 0; j < newRect.height; j++) {
for (int i = 0; i < newRect.width / 2; i++) {
data[dstCount++] =
(byte)((tempData[srcCount] & 0xf0) >> 4);
data[dstCount++] =
(byte)(tempData[srcCount++] & 0x0f);
}
if (padding == 1) {
data[dstCount++] =
(byte)((tempData[srcCount++] & 0xf0) >> 4);
}
}
int len = colormap.length / 3;
int len2 = len * 2;
int cmapValue;
int lookup;
int count = 0;
for (int i = 0; i < bytes; i++) {
lookup = data[i] & 0xff;
cmapValue = colormap[lookup + len2];
sdata[count++] = (short)(cmapValue & 0xffff);
cmapValue = colormap[lookup + len];
sdata[count++] = (short)(cmapValue & 0xffff);
cmapValue = colormap[lookup];
sdata[count++] = (short)(cmapValue & 0xffff);
}
} else {
// Output byte values, use IndexColorModel for unpacking
try {
// If compressed, decode the data.
if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
decodePackbits(data, bytesPostDecoding, bdata);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
lzwDecoder.decode(data, bdata, newRect.height);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
inflate(data, bdata);
} else if (compression == COMP_NONE) {
stream.readFully(bdata, 0, byteCount);
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
}
}
} else if (imageType == TYPE_GRAY_4BIT) { // 4-bit gray
try {
if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
// Since the decompressed data will still be packed
// 2 pixels into 1 byte, calculate bytesInThisTile
int bytesInThisTile;
if ((newRect.width % 8) == 0) {
bytesInThisTile = (newRect.width / 2) * newRect.height;
} else {
bytesInThisTile = (newRect.width / 2 + 1)
* newRect.height;
}
decodePackbits(data, bytesInThisTile, bdata);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
lzwDecoder.decode(data, bdata, newRect.height);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
inflate(data, bdata);
} else {
stream.readFully(bdata, 0, byteCount);
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
} else { // everything else
try {
if (sampleSize == 8) {
if (compression == COMP_NONE) {
stream.readFully(bdata, 0, byteCount);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
lzwDecoder.decode(data, bdata, newRect.height);
} else if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
decodePackbits(data, unitsInThisTile, bdata);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
inflate(data, bdata);
} else {
throw new RuntimeException(PropertyUtil.getString("TIFFImage10")
+ ": " + compression);
}
} else if (sampleSize == 16) {
if (compression == COMP_NONE) {
readShorts(byteCount / 2, sdata);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
// Since unitsInThisTile is the number of shorts,
// but we do our decompression in terms of bytes, we
// need to multiply unitsInThisTile by 2 in order to
// figure out how many bytes we'll get after
// decompression.
byte[] byteArray = new byte[unitsInThisTile * 2];
lzwDecoder.decode(data, byteArray, newRect.height);
interpretBytesAsShorts(byteArray, sdata,
unitsInThisTile);
} else if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
// Since unitsInThisTile is the number of shorts,
// but we do our decompression in terms of bytes, we
// need to multiply unitsInThisTile by 2 in order to
// figure out how many bytes we'll get after
// decompression.
int bytesInThisTile = unitsInThisTile * 2;
byte[] byteArray = new byte[bytesInThisTile];
decodePackbits(data, bytesInThisTile, byteArray);
interpretBytesAsShorts(byteArray, sdata,
unitsInThisTile);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
byte[] byteArray = new byte[unitsInThisTile * 2];
inflate(data, byteArray);
interpretBytesAsShorts(byteArray, sdata,
unitsInThisTile);
}
} else if (sampleSize == 32
&& dataType == DataBuffer.TYPE_INT) { // redundant
if (compression == COMP_NONE) {
readInts(byteCount / 4, idata);
} else if (compression == COMP_LZW) {
stream.readFully(data, 0, byteCount);
// Since unitsInThisTile is the number of ints,
// but we do our decompression in terms of bytes, we
// need to multiply unitsInThisTile by 4 in order to
// figure out how many bytes we'll get after
// decompression.
byte[] byteArray = new byte[unitsInThisTile * 4];
lzwDecoder.decode(data, byteArray, newRect.height);
interpretBytesAsInts(byteArray, idata,
unitsInThisTile);
} else if (compression == COMP_PACKBITS) {
stream.readFully(data, 0, byteCount);
// Since unitsInThisTile is the number of ints,
// but we do our decompression in terms of bytes, we
// need to multiply unitsInThisTile by 4 in order to
// figure out how many bytes we'll get after
// decompression.
int bytesInThisTile = unitsInThisTile * 4;
byte[] byteArray = new byte[bytesInThisTile];
decodePackbits(data, bytesInThisTile, byteArray);
interpretBytesAsInts(byteArray, idata,
unitsInThisTile);
} else if (compression == COMP_DEFLATE) {
stream.readFully(data, 0, byteCount);
byte[] byteArray = new byte[unitsInThisTile * 4];
inflate(data, byteArray);
interpretBytesAsInts(byteArray, idata,
unitsInThisTile);
}
}
stream.seek(saveOffset);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
// Modify the data for certain special cases.
switch (imageType) {
case TYPE_GRAY:
case TYPE_GRAY_ALPHA:
if (isWhiteZero) {
// Since we are using a ComponentColorModel with this
// image, we need to change the WhiteIsZero data to
// BlackIsZero data so it will display properly.
if (dataType == DataBuffer.TYPE_BYTE
&& !(getColorModel() instanceof IndexColorModel)) {
for (int l = 0; l < bdata.length; l += numBands) {
bdata[l] = (byte)(255 - bdata[l]);
}
} else if (dataType == DataBuffer.TYPE_USHORT) {
int ushortMax = Short.MAX_VALUE - Short.MIN_VALUE;
for (int l = 0; l < sdata.length; l += numBands) {
sdata[l] = (short)(ushortMax - sdata[l]);
}
} else if (dataType == DataBuffer.TYPE_SHORT) {
for (int l = 0; l < sdata.length; l += numBands) {
sdata[l] = (short)(~sdata[l]);
}
} else if (dataType == DataBuffer.TYPE_INT) {
long uintMax = ((long)Integer.MAX_VALUE
- (long)Integer.MIN_VALUE);
for (int l = 0; l < idata.length; l += numBands) {
idata[l] = (int)(uintMax - idata[l]);
}
}
}
break;
case TYPE_RGB:
// Change RGB to BGR order, as Java2D displays that faster.
// Unnecessary for JPEG-in-TIFF as the decoder handles it.
if (sampleSize == 8 && compression != COMP_JPEG_TTN2) {
for (int i = 0; i < unitsInThisTile; i += 3) {
bswap = bdata[i];
bdata[i] = bdata[i + 2];
bdata[i + 2] = bswap;
}
} else if (sampleSize == 16) {
for (int i = 0; i < unitsInThisTile; i += 3) {
sswap = sdata[i];
sdata[i] = sdata[i + 2];
sdata[i + 2] = sswap;
}
} else if (sampleSize == 32) {
if (dataType == DataBuffer.TYPE_INT) {
for (int i = 0; i < unitsInThisTile; i += 3) {
iswap = idata[i];
idata[i] = idata[i + 2];
idata[i + 2] = iswap;
}
}
}
break;
case TYPE_RGB_ALPHA:
// Convert from RGBA to ABGR for Java2D
if (sampleSize == 8) {
for (int i = 0; i < unitsInThisTile; i += 4) {
// Swap R and A
bswap = bdata[i];
bdata[i] = bdata[i + 3];
bdata[i + 3] = bswap;
// Swap G and B
bswap = bdata[i + 1];
bdata[i + 1] = bdata[i + 2];
bdata[i + 2] = bswap;
}
} else if (sampleSize == 16) {
for (int i = 0; i < unitsInThisTile; i += 4) {
// Swap R and A
sswap = sdata[i];
sdata[i] = sdata[i + 3];
sdata[i + 3] = sswap;
// Swap G and B
sswap = sdata[i + 1];
sdata[i + 1] = sdata[i + 2];
sdata[i + 2] = sswap;
}
} else if (sampleSize == 32) {
if (dataType == DataBuffer.TYPE_INT) {
for (int i = 0; i < unitsInThisTile; i += 4) {
// Swap R and A
iswap = idata[i];
idata[i] = idata[i + 3];
idata[i + 3] = iswap;
// Swap G and B
iswap = idata[i + 1];
idata[i + 1] = idata[i + 2];
idata[i + 2] = iswap;
}
}
}
break;
case TYPE_YCBCR_SUB:
// Post-processing for YCbCr with subsampled chrominance:
// simply replicate the chroma channels for displayability.
int pixelsPerDataUnit = chromaSubH * chromaSubV;
int numH = newRect.width / chromaSubH;
int numV = newRect.height / chromaSubV;
byte[] tempData = new byte[numH * numV * (pixelsPerDataUnit + 2)];
System.arraycopy(bdata, 0, tempData, 0, tempData.length);
int samplesPerDataUnit = pixelsPerDataUnit * 3;
int[] pixels = new int[samplesPerDataUnit];
int bOffset = 0;
int offsetCb = pixelsPerDataUnit;
int offsetCr = offsetCb + 1;
int y = newRect.y;
for (int j = 0; j < numV; j++) {
int x = newRect.x;
for (int i = 0; i < numH; i++) {
int cb = tempData[bOffset + offsetCb];
int cr = tempData[bOffset + offsetCr];
int k = 0;
while (k < samplesPerDataUnit) {
pixels[k++] = tempData[bOffset++];
pixels[k++] = cb;
pixels[k++] = cr;
}
bOffset += 2;
tile.setPixels(x, y, chromaSubH, chromaSubV, pixels);
x += chromaSubH;
}
y += chromaSubV;
}
break;
}
}
return tile;
}
private void readShorts(int shortCount, short[] shortArray) {
// Since each short consists of 2 bytes, we need a
// byte array of double size
int byteCount = 2 * shortCount;
byte[] byteArray = new byte[byteCount];
try {
stream.readFully(byteArray, 0, byteCount);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
interpretBytesAsShorts(byteArray, shortArray, shortCount);
}
private void readInts(int intCount, int[] intArray) {
// Since each int consists of 4 bytes, we need a
// byte array of quadruple size
int byteCount = 4 * intCount;
byte[] byteArray = new byte[byteCount];
try {
stream.readFully(byteArray, 0, byteCount);
} catch (IOException ioe) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage13") + ": "
+ ioe.getMessage());
}
interpretBytesAsInts(byteArray, intArray, intCount);
}
// Method to interpret a byte array to a short array, depending on
// whether the bytes are stored in a big endian or little endian format.
private void interpretBytesAsShorts(byte[] byteArray,
short[] shortArray,
int shortCount) {
int j = 0;
int firstByte;
int secondByte;
if (isBigEndian) {
for (int i = 0; i < shortCount; i++) {
firstByte = byteArray[j++] & 0xff;
secondByte = byteArray[j++] & 0xff;
shortArray[i] = (short)((firstByte << 8) + secondByte);
}
} else {
for (int i = 0; i < shortCount; i++) {
firstByte = byteArray[j++] & 0xff;
secondByte = byteArray[j++] & 0xff;
shortArray[i] = (short)((secondByte << 8) + firstByte);
}
}
}
// Method to interpret a byte array to a int array, depending on
// whether the bytes are stored in a big endian or little endian format.
private void interpretBytesAsInts(byte[] byteArray,
int[] intArray,
int intCount) {
int j = 0;
if (isBigEndian) {
for (int i = 0; i < intCount; i++) {
intArray[i] = (((byteArray[j++] & 0xff) << 24)
| ((byteArray[j++] & 0xff) << 16)
| ((byteArray[j++] & 0xff) << 8)
| (byteArray[j++] & 0xff));
}
} else {
for (int i = 0; i < intCount; i++) {
intArray[i] = ((byteArray[j++] & 0xff)
| ((byteArray[j++] & 0xff) << 8)
| ((byteArray[j++] & 0xff) << 16)
| ((byteArray[j++] & 0xff) << 24));
}
}
}
// Uncompress packbits compressed image data.
private byte[] decodePackbits(byte[] data, int arraySize, byte[] dst) {
if (dst == null) {
dst = new byte[arraySize];
}
int srcCount = 0;
int dstCount = 0;
byte repeat;
byte b;
try {
while (dstCount < arraySize) {
b = data[srcCount++];
if (b >= 0 && b <= 127) {
// literal run packet
for (int i = 0; i < (b + 1); i++) {
dst[dstCount++] = data[srcCount++];
}
} else if (b <= -1 && b >= -127) {
// 2 byte encoded run packet
repeat = data[srcCount++];
for (int i = 0; i < (-b + 1); i++) {
dst[dstCount++] = repeat;
}
} else {
// no-op packet. Do nothing
srcCount++;
}
}
} catch (java.lang.ArrayIndexOutOfBoundsException ae) {
throw new RuntimeException(PropertyUtil.getString("TIFFImage14") + ": "
+ ae.getMessage());
}
return dst;
}
// Need a createColorModel().
// Create ComponentColorModel for TYPE_RGB images
private ComponentColorModel createAlphaComponentColorModel(
int dataType, int numBands,
boolean isAlphaPremultiplied, int transparency) {
ComponentColorModel ccm = null;
int[] rgbBits = null;
ColorSpace cs = null;
switch(numBands) {
case 2: // gray+alpha
cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
break;
case 4: // RGB+alpha
cs = ColorSpace.getInstance(ColorSpace.CS_sRGB);
break;
default:
throw new IllegalArgumentException(PropertyUtil.getString("TIFFImage19") + ": "
+ numBands);
}
int componentSize = 0;
switch(dataType) {
case DataBuffer.TYPE_BYTE:
componentSize = 8;
break;
case DataBuffer.TYPE_USHORT:
case DataBuffer.TYPE_SHORT:
componentSize = 16;
break;
case DataBuffer.TYPE_INT:
componentSize = 32;
break;
default:
throw new IllegalArgumentException(PropertyUtil.getString("TIFFImage20") + ": "
+ dataType);
}
rgbBits = new int[numBands];
for (int i = 0; i < numBands; i++) {
rgbBits[i] = componentSize;
}
ccm = new ComponentColorModel(cs,
rgbBits,
true,
isAlphaPremultiplied,
transparency,
dataType);
return ccm;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy