org.apfloat.aparapi.ColumnTwoPassFNTStrategy Maven / Gradle / Ivy
Show all versions of apfloat-aparapi Show documentation
/*
* MIT License
*
* Copyright (c) 2002-2021 Mikko Tommila
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.apfloat.aparapi;
import org.apfloat.internal.TwoPassFNTStrategy;
import org.apfloat.spi.ArrayAccess;
import org.apfloat.spi.DataStorage;
import org.apfloat.spi.NTTStepStrategy;
/**
* Two-pass NTT implementation that processes the data in the columns of the matrix.
*
* This transform only works together with an {@link NTTStepStrategy} implementation
* that processes the data in columns instead of rows.
*
* Note that if the data size is too big compared to the maximum available memory then the
* data is read from disk in too thin slices and the level of parallelism may become too
* small for the GPU, ruining the performance. The GPU global size i.e. the number of columns
* read from the data matrix to memory at one time should be at least 1024.
*
* @since 1.8.3
* @version 1.8.3
* @author Mikko Tommila
*/
public class ColumnTwoPassFNTStrategy
extends TwoPassFNTStrategy
{
/**
* Basic constructor.
*
* @param stepStrategy A step strategy that can process data in columns.
*/
public ColumnTwoPassFNTStrategy(NTTStepStrategy stepStrategy)
{
// Note that there is no defaultStrategy here; if we get to the two-pass algorithm then we
// assume that the data size is always "big enough" for a sufficient level of parallelism on the GPU
super.stepStrategy = stepStrategy;
}
@Override
protected ArrayAccess getColumns(DataStorage dataStorage, int startColumn, int columns, int rows)
{
// Get columns un-transposed
return dataStorage.getArray(DataStorage.READ_WRITE, startColumn, columns, rows);
}
@Override
protected ArrayAccess getRows(DataStorage dataStorage, int startRow, int rows, int columns)
{
// Get rows transposed as we want to organize the data in columns
return dataStorage.subsequence(startRow * columns, rows * columns).getTransposedArray(DataStorage.READ_WRITE, 0, columns, rows);
}
@Override
protected void multiplyElements(ArrayAccess arrayAccess, int startRow, int startColumn, int rows, int columns, long length, long totalTransformLength, boolean isInverse, int modulus)
{
// Data is processed in transposed form compared to the normal two-pass algorithm, so swap rows and columns
super.multiplyElements(arrayAccess, startColumn, startRow, columns, rows, length, totalTransformLength, isInverse, modulus);
}
}