All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apfloat.samples.PiDistributed Maven / Gradle / Ivy

/*
 * Apfloat arbitrary precision arithmetic library
 * Copyright (C) 2002-2017  Mikko Tommila
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */
package org.apfloat.samples;

import java.io.PrintWriter;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.LinkedList;
import java.util.ArrayList;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.Enumeration;
import java.util.ResourceBundle;
import java.util.MissingResourceException;

import org.apfloat.Apfloat;
import org.apfloat.ApfloatContext;
import org.apfloat.ApfloatMath;
import org.apfloat.ApfloatRuntimeException;

/**
 * Calculates pi using a cluster of servers.
 * The servers should be running {@link OperationServer}.
 *
 * The names and ports of the cluster nodes are read from the file
 * cluster.properties, or a ResourceBundle
 * by the name "cluster". The format of the property file is as
 * follows:
 *
 * 
 * server1=hostname.company.com:1234
 * server2=hostname2.company.com:2345
 * server3=hostname3.company.com:3456
 * weight1=100
 * weight2=110
 * weight3=50
 * 
* * The server addresses are specified as hostname:port. Weights can * (but don't have to) be assigned to nodes to indicate the relative * performance of each node, to allow distributing a suitable amount * of work for each node. For example, weight2 is the * relative performance of server2 etc. The weights must * be integers in the range 1...1000.

* * Guidelines for configuring the servers: * *

    *
  • If the machines are not identical, give proper weights to every * machine. This can improve performance greatly.
  • *
  • If the machines are somewhat similar (e.g. same processor but * different clock frequency), you can calculate the weight roughly * as clockFrequency * numberOfProcessors. For example, * a machine with two 1600MHz processors is four times as fast as * a machine with one 800MHz processor. *
  • *
  • If the machines are very heterogenous, you can benchmark their * performance by running e.g. {@link PiParallel} with one * million digits. Remember to specify the correct number of * CPUs on each machine.
  • *
  • Different JVMs can have different performance. For example, * Sun's Java client VM achieves roughly two thirds of the * performance of the server VM when running this application.
  • *
  • When running {@link OperationServer} on the cluster nodes, * specify the number of worker threads for each server to be * the same as the number of CPUs of the machine.
  • *
  • Additionally, you should specify the number of processors * correctly in the apfloat.properties file * for each cluster server.
  • *
*

* * Similarly as with {@link PiParallel}, if some nodes have multiple * CPUs, to get any performance gain from running many * threads in parallel, the JVM must be executing native threads. * If the JVM is running in green threads mode, there is no * advantage of having multiple threads, as the JVM will in fact * execute just one thread and divide its time to multiple * simulated threads. * * @version 1.8.2 * @author Mikko Tommila */ public class PiDistributed extends PiParallel { /** * Distributed version of the binary splitting algorithm. * Uses multiple computers to calculate pi in parallel. */ protected static class DistributedBinarySplittingPiCalculator extends ParallelBinarySplittingPiCalculator { /** * Construct a distributed pi calculator with the specified precision and radix. * * @param series The binary splitting series to be used. */ public DistributedBinarySplittingPiCalculator(BinarySplittingSeries series) { super(series); } /** * Entry point for the distributed binary splitting algorithm. * * @param n1 Start term. * @param n2 End term. * @param T Algorithm parameter. * @param Q Algorithm parameter. * @param P Algorithm parameter. * @param F Pointer to inverse square root parameter. * @param nodes The operation executors to be used for the calculation. */ public void r(final long n1, final long n2, final ApfloatHolder T, final ApfloatHolder Q, final ApfloatHolder P, final ApfloatHolder F, Node[] nodes) throws ApfloatRuntimeException { if (nodes.length == 1) { // End of splitting work between nodes // Calculate remaining terms on the node // Splitting of work continues on the server node using multiple threads if (DEBUG) Pi.err.println("PiDistributed.r(" + n1 + ", " + n2 + ") transferring to server side node " + nodes[0]); ApfloatHolder[] TQP = nodes[0].execute(new Operation() { public ApfloatHolder[] execute() { // Continue splitting by threads on server side r(n1, n2, T, Q, P, null); return new ApfloatHolder[] { T, Q, P }; } }); T.setApfloat(TQP[0].getApfloat()); Q.setApfloat(TQP[1].getApfloat()); if (P != null) P.setApfloat(TQP[2].getApfloat()); } else { // Multiple nodes available; split work in ratio of node weights and execute in parallel // This split is done on the client side Object[] objs = splitNodes(nodes); final Node[] nodes1 = (Node[]) objs[0], nodes2 = (Node[]) objs[2]; long weight1 = (Long) objs[1], weight2 = (Long) objs[3]; final long nMiddle = n1 + (n2 - n1) * weight1 / (weight1 + weight2); final ApfloatHolder LT = new ApfloatHolder(), LQ = new ApfloatHolder(), LP = new ApfloatHolder(); if (DEBUG) Pi.err.println("PiDistributed.r(" + n1 + ", " + n2 + ") splitting " + formatArray(nodes) + " to r(" + n1 + ", " + nMiddle + ") " + formatArray(nodes1) + ", r(" + nMiddle + ", " + n2 + ") " + formatArray(nodes2)); BackgroundOperation operation; // Call recursively this r() method to further split the term calculation operation = new BackgroundOperation(new Operation() { public Object execute() { r(n1, nMiddle, LT, LQ, LP, null, nodes1); return null; } }); r(nMiddle, n2, T, Q, P, null, nodes2); operation.getResult(); // Waits for operation to complete // Calculate the combining multiplies using available nodes in parallel // Up to 4 calculations will be executed in parallel // If more than 4 nodes (threads) are available, each calculation can use multiple nodes (threads) assert (P == null || F == null); int numberNeeded = (P != null || F != null ? 1 : 0) + 3; nodes = recombineNodes(nodes, numberNeeded); final Operation sqrtOperation = new Operation() { public Apfloat execute() { return ApfloatMath.inverseRoot(F.getApfloat(), 2); } }, T1operation = new Operation() { public Apfloat execute() { return Q.getApfloat().multiply(LT.getApfloat()); } }, T2operation = new Operation() { public Apfloat execute() { return LP.getApfloat().multiply(T.getApfloat()); } }, Toperation = new Operation() { public Apfloat execute() { return T1operation.execute().add(T2operation.execute()); } }, Qoperation = new Operation() { public Apfloat execute() { return LQ.getApfloat().multiply(Q.getApfloat()); } }, Poperation = new Operation() { public Apfloat execute() { return LP.getApfloat().multiply(P.getApfloat()); } }; final Operation QPoperation = new Operation() { public Apfloat[] execute() { return new Apfloat[] { Qoperation.execute(), P == null ? null : Poperation.execute() }; } }; int availableNodes = nodes.length; BackgroundOperation sqrtBackgroundOperation = null, operation1, operation2, operation3 = null; if (F != null && availableNodes > 1) { if (DEBUG) Pi.err.println("PiDistributed.r(" + n1 + ", " + n2 + ") calculating isqrt on node " + nodes[availableNodes - 1]); sqrtBackgroundOperation = nodes[availableNodes - 1].executeBackground(sqrtOperation); availableNodes--; } Apfloat t = null, q = null, p = null; switch (availableNodes) { case 1: { t = nodes[0].execute(Toperation); q = nodes[0].execute(Qoperation); if (P != null) p = nodes[0].execute(Poperation); break; } case 2: { operation1 = nodes[1].executeBackground(T1operation); Apfloat tmp1 = nodes[0].execute(T2operation), tmp2 = operation1.getResult(); operation1 = nodes[1].executeBackground(Qoperation); t = executeAdd(nodes[0], tmp1, tmp2); if (P != null) p = nodes[0].execute(Poperation); q = operation1.getResult(); break; } case 3: { BackgroundOperation operation1a; operation1a = nodes[2].executeBackground(QPoperation); operation2 = nodes[1].executeBackground(T1operation); Apfloat tmp1 = nodes[0].execute(T2operation), tmp2 = operation2.getResult(); t = executeAdd(nodes[1], tmp1, tmp2); Apfloat[] QP = operation1a.getResult(); q = QP[0]; if (P != null) p = QP[1]; break; } default: { operation1 = nodes[availableNodes - 1].executeBackground(T1operation); operation2 = nodes[availableNodes - 3].executeBackground(Qoperation); if (P != null) operation3 = nodes[availableNodes - 4].executeBackground(Poperation); Apfloat tmp1 = nodes[availableNodes - 2].execute(T2operation), tmp2 = operation1.getResult(); t = executeAdd(nodes[availableNodes - 1], tmp1, tmp2); q = operation2.getResult(); if (P != null) p = operation3.getResult(); break; } } T.setApfloat(t); Q.setApfloat(q); if (P != null) P.setApfloat(p); if (sqrtBackgroundOperation != null) { F.setApfloat(sqrtBackgroundOperation.getResult()); } } } /** * Get the available set of operation executor nodes. * This implementation returns {@link RemoteOperationExecutor}s, * which execute operations on the cluster's nodes. * * @return The nodes of the cluster. */ public Node[] getNodes() { ResourceBundle resourceBundle = null; try { resourceBundle = ResourceBundle.getBundle("cluster"); } catch (MissingResourceException mre) { System.err.println("ResourceBundle \"cluster\" not found"); System.exit(1); } Node[] nodes = null; List list = new ArrayList(); long totalWeight = 0; int weightedNodes = 0; // Loop through all properties in the file Enumeration keys = resourceBundle.getKeys(); while (keys.hasMoreElements()) { String key = keys.nextElement(); // Only process the server properties if (key.startsWith("server")) { int weight = -1; // -1 means unspecified here // Check if a weight is specified for this server try { String weightString = resourceBundle.getString("weight" + key.substring(6)); try { weight = Integer.parseInt(weightString); if (weight < MIN_WEIGHT || weight > MAX_WEIGHT) { throw new NumberFormatException(weightString); } weightedNodes++; } catch (NumberFormatException nfe) { System.err.println("Invalid weight: " + nfe.getMessage()); System.exit(1); } totalWeight += weight; } catch (MissingResourceException mre) { // Weight not specified, OK } // Parse hostname and port String server = resourceBundle.getString(key); int index = server.indexOf(':'); if (index < 0) { System.err.println("No port specified for server: " + server); System.exit(1); } String host = server.substring(0, index), portString = server.substring(index + 1); int port = 0; try { port = Integer.parseInt(portString); } catch (NumberFormatException nfe) { System.err.println("Invalid port for host " + host + ": " + portString); System.exit(1); } list.add(new Node(host, port, weight)); } } if (list.size() == 0) { System.err.println("No nodes for cluster specified"); System.exit(1); } nodes = list.toArray(new Node[list.size()]); // If no weights were specified at all, all nodes have same weight int averageWeight = (weightedNodes == 0 ? 1 : (int) (totalWeight / weightedNodes)); // Loop through all nodes and set average weight for all nodes that don't have a weight specified for (Node node : nodes) { if (node.getWeight() == -1) { node.setWeight(averageWeight); } } // Sort nodes in weight order (smallest first) Arrays.sort(nodes); // Get the available number of threads for each node for (Node node : nodes) { int numberOfProcessors = node.execute(new Operation() { public Integer execute() { return ApfloatContext.getGlobalContext().getNumberOfProcessors(); } }); node.setNumberOfProcessors(numberOfProcessors); } if (DEBUG) Pi.err.println("PiDistributed.getNodes " + formatArray(nodes)); return nodes; } /** * Attempt to combine or split nodes to form the needed number * of nodes. The returned number of nodes is something between * the number of nodes input and the number of nodes requested. * The requested number of nodes can be less than or greater than * the number of input nodes. * * @param nodes The nodes to recombine. * @param numberNeeded The requested number of nodes. * * @return The set of recombined nodes. */ public Node[] recombineNodes(Node[] nodes, int numberNeeded) { if (numberNeeded <= nodes.length) { // Method is running on client side // RemoteOperationExecutors can't be combined since they don't exist on the same machine like threads if (DEBUG) Pi.err.println("PiDistributed.recombineNodes unable to recombine nodes " + formatArray(nodes) + " (" + numberNeeded + " <= " + nodes.length + ")"); return nodes; } else { // Split RemoteOperationExecutors to executors that don't use all threads available on the server SortedSet allNodes = new TreeSet(), splittableNodes = new TreeSet(); for (Node node : nodes) { (node.getNumberOfProcessors() > 1 ? splittableNodes : allNodes).add(node); } // Continue splitting heaviest node until no more splits can be made or we have the needed number of nodes while (splittableNodes.size() > 0 && allNodes.size() + splittableNodes.size() < numberNeeded) { // Get heaviest splittable node Node node = splittableNodes.last(); int numberOfProcessors = node.getNumberOfProcessors(), numberOfProcessors1 = numberOfProcessors / 2, numberOfProcessors2 = (numberOfProcessors + 1) / 2; Node node1 = new Node(node.getHost(), node.getPort(), node.getWeight() * numberOfProcessors1 / numberOfProcessors, numberOfProcessors1), node2 = new Node(node.getHost(), node.getPort(), node.getWeight() * numberOfProcessors2 / numberOfProcessors, numberOfProcessors2); splittableNodes.remove(node); (node1.getNumberOfProcessors() > 1 ? splittableNodes : allNodes).add(node1); (node2.getNumberOfProcessors() > 1 ? splittableNodes : allNodes).add(node2); } allNodes.addAll(splittableNodes); Node[] newNodes = allNodes.toArray(new Node[allNodes.size()]); if (DEBUG) Pi.err.println("PiDistributed.recombineNodes recombined " + formatArray(nodes) + " to " + formatArray(newNodes) + " (requested " + numberNeeded + ")"); return newNodes; } } // Split nodes to two sets that have roughly the same total weights private Object[] splitNodes(Node[] nodes) { List list1 = new LinkedList(), list2 = new LinkedList(); long weight1 = 0, weight2 = 0; // Start from heaviest node to make maximally equal split for (int i = nodes.length; --i >= 0;) { if (weight1 < weight2) { list1.add(0, nodes[i]); weight1 += nodes[i].getWeight(); } else { list2.add(0, nodes[i]); weight2 += nodes[i].getWeight(); } } return new Object[] { list1.toArray(new Node[list1.size()]), weight1, list2.toArray(new Node[list2.size()]), weight2 }; } private Apfloat executeAdd(Node node, final Apfloat x, final Apfloat y) { return node.execute(new Operation() { public Apfloat execute() { return x.add(y); } }); } } /** * Class for calculating pi using the distributed Chudnovskys' binary splitting algorithm. */ public static class DistributedChudnovskyPiCalculator extends ParallelChudnovskyPiCalculator { /** * Construct a pi calculator with the specified precision and radix. * * @param precision The target precision. * @param radix The radix to be used. */ public DistributedChudnovskyPiCalculator(long precision, int radix) throws ApfloatRuntimeException { this(new DistributedBinarySplittingPiCalculator(new ChudnovskyBinarySplittingSeries(precision, radix)), precision, radix); } private DistributedChudnovskyPiCalculator(DistributedBinarySplittingPiCalculator calculator, long precision, int radix) throws ApfloatRuntimeException { super(calculator, precision, radix); this.calculator = calculator; this.precision = precision; this.radix = radix; } @Override public Apfloat execute() { Pi.err.println("Using the Chudnovsky brothers' binary splitting algorithm"); Node[] nodes = this.calculator.getNodes(); if (nodes.length > 1) { Pi.err.println("Using up to " + nodes.length + " parallel operations for calculation"); } final Apfloat f = new Apfloat(1823176476672000L, this.precision, this.radix); final ApfloatHolder T = new ApfloatHolder(), Q = new ApfloatHolder(), F = new ApfloatHolder(f); // Perform the calculation of T, Q and P to requested precision only, to improve performance long terms = (long) ((double) this.precision * Math.log((double) this.radix) / 32.65445004177); long time = System.currentTimeMillis(); this.calculator.r(0, terms + 1, T, Q, null, F, nodes); time = System.currentTimeMillis() - time; Pi.err.println("Series terms calculation complete, elapsed time " + time / 1000.0 + " seconds"); Pi.err.printf("Final value "); nodes = this.calculator.recombineNodes(nodes, 1); time = System.currentTimeMillis(); Apfloat pi = nodes[nodes.length - 1].execute(new Operation() { public Apfloat execute() { Apfloat t = T.getApfloat(), q = Q.getApfloat(), factor = F.getApfloat(); if (factor == f) { factor = ApfloatMath.inverseRoot(f, 2); } return ApfloatMath.inverseRoot(factor.multiply(t), 1).multiply(q); } }); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); return pi; } private DistributedBinarySplittingPiCalculator calculator; private long precision; private int radix; } /** * Class for calculating pi using the distributed Ramanujan's binary splitting algorithm. */ public static class DistributedRamanujanPiCalculator extends ParallelRamanujanPiCalculator { /** * Construct a pi calculator with the specified precision and radix. * * @param precision The target precision. * @param radix The radix to be used. */ public DistributedRamanujanPiCalculator(long precision, int radix) throws ApfloatRuntimeException { this(new DistributedBinarySplittingPiCalculator(new RamanujanBinarySplittingSeries(precision, radix)), precision, radix); } private DistributedRamanujanPiCalculator(DistributedBinarySplittingPiCalculator calculator, long precision, int radix) throws ApfloatRuntimeException { super(calculator, precision, radix); this.calculator = calculator; this.precision = precision; this.radix = radix; } @Override public Apfloat execute() { Pi.err.println("Using the Ramanujan binary splitting algorithm"); Node[] nodes = this.calculator.getNodes(); if (nodes.length > 1) { Pi.err.println("Using up to " + nodes.length + " parallel operations for calculation"); } final Apfloat f = new Apfloat(8, this.precision, this.radix); final ApfloatHolder T = new ApfloatHolder(), Q = new ApfloatHolder(), F = new ApfloatHolder(f); // Perform the calculation of T, Q and P to requested precision only, to improve performance long terms = (long) ((double) this.precision * Math.log((double) this.radix) / 18.38047940053836); long time = System.currentTimeMillis(); this.calculator.r(0, terms + 1, T, Q, null, F, nodes); time = System.currentTimeMillis() - time; Pi.err.println("Series terms calculation complete, elapsed time " + time / 1000.0 + " seconds"); Pi.err.printf("Final value "); nodes = this.calculator.recombineNodes(nodes, 1); time = System.currentTimeMillis(); Apfloat pi = nodes[nodes.length - 1].execute(new Operation() { public Apfloat execute() { Apfloat t = T.getApfloat(), q = Q.getApfloat(), factor = F.getApfloat(); if (factor == f) { factor = ApfloatMath.inverseRoot(f, 2); } return ApfloatMath.inverseRoot(t, 1).multiply(factor).multiply(new Apfloat(9801, Apfloat.INFINITE, DistributedRamanujanPiCalculator.this.radix)).multiply(q); } }); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); return pi; } private DistributedBinarySplittingPiCalculator calculator; private long precision; private int radix; } /** * RemoteOperationExecutor that implements the weight property. */ protected static class Node extends RemoteOperationExecutor implements Comparable { /** * Construct a Node with the specified parameters and one processor. * * @param host The remote host. * @param port The remote port. * @param weight The weight. */ public Node(String host, int port, int weight) { this(host, port, weight, 1); } /** * Construct a Node with the specified parameters. * * @param host The remote host. * @param port The remote port. * @param weight The weight. * @param numberOfProcessors The number of processors. */ public Node(String host, int port, int weight, int numberOfProcessors) { super(host, port); this.weight = weight; this.numberOfProcessors = numberOfProcessors; } @Override public T execute(Operation operation) { return super.execute(new ThreadLimitedOperation(operation, this.numberOfProcessors)); } @Override public BackgroundOperation executeBackground(Operation operation) { return super.executeBackground(new ThreadLimitedOperation(operation, this.numberOfProcessors)); } /** * Set the weight. * * @param weight The weight. */ public void setWeight(int weight) { this.weight = weight; } @Override public int getWeight() { return this.weight; } /** * Set the number of processors. * * @param numberOfProcessors The number of processors. */ public void setNumberOfProcessors(int numberOfProcessors) { this.numberOfProcessors = numberOfProcessors; } /** * Get the number of processors. * * @return The number of processors. */ public int getNumberOfProcessors() { return this.numberOfProcessors; } /** * Compare this Node to another Node. * * @param that The other node to compare to. * * @return A number less than zero if this Node should be ordered before the other node, or gerater than zero for the reverse order. Should not return zero. */ public int compareTo(Node that) { // Must differentiate objects with same weight but that are not the same int weightDifference = this.weight - that.weight; return (weightDifference != 0 ? weightDifference : this.hashCode() - that.hashCode()); // This is not rock solid... } /** * Convert to String. * * @return The string representation. */ @Override public String toString() { return this.weight + "/" + this.numberOfProcessors; } private int weight; private int numberOfProcessors; } PiDistributed() { } /** * Command-line entry point. * * @param args Command-line parameters. * * @exception IOException In case writing the output fails. */ public static void main(String[] args) throws IOException, ApfloatRuntimeException { if (args.length < 1) { System.err.println("USAGE: PiDistributed digits [method] [radix]"); System.err.println(" radix must be 2...36"); return; } long precision = getPrecision(args[0]); int method = (args.length > 1 ? getInt(args[1], "method", 0, 1) : 0), radix = (args.length > 2 ? getRadix(args[2]) : ApfloatContext.getContext().getDefaultRadix()); Operation operation; switch (method) { case 0: operation = new DistributedChudnovskyPiCalculator(precision, radix); break; default: operation = new DistributedRamanujanPiCalculator(precision, radix); } setOut(new PrintWriter(System.out, true)); setErr(new PrintWriter(System.err, true)); run(precision, radix, operation); } private static String formatArray(Object[] array) { StringBuilder buffer = new StringBuilder(); buffer.append("{ "); for (int i = 0; i < array.length; i++) { buffer.append(i == 0 ? "" : ", "); buffer.append(array[i]); } buffer.append(" }"); return buffer.toString(); } private static final int MIN_WEIGHT = 1, MAX_WEIGHT = 1000; private static final boolean DEBUG = false; }