All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apfloat.samples.Pi Maven / Gradle / Ivy

/*
 * Apfloat arbitrary precision arithmetic library
 * Copyright (C) 2002-2019  Mikko Tommila
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */
package org.apfloat.samples;

import java.io.Serializable;
import java.io.PrintWriter;
import java.io.IOException;
import java.util.concurrent.atomic.AtomicLong;

import org.apfloat.Apfloat;
import org.apfloat.ApfloatContext;
import org.apfloat.ApfloatMath;
import org.apfloat.ApfloatRuntimeException;

/**
 * Calculates pi using four different algorithms.
 *
 * @version 1.8.2
 * @author Mikko Tommila
 */

public class Pi
{
    // Implementation note: we use printf() for printing, because it flushes the output (print() does not)

    /**
     * Terms for the binary splitting series.
     */

    protected static interface BinarySplittingSeries
        extends Serializable
    {
        /**
         * Binary splitting term.
         *
         * @param n The term.
         *
         * @return The value.
         */

        public Apfloat a(long n)
            throws ApfloatRuntimeException;

        /**
         * Binary splitting term.
         *
         * @param n The term.
         *
         * @return The value.
         */

        public Apfloat p(long n)
            throws ApfloatRuntimeException;

        /**
         * Binary splitting term.
         *
         * @param n The term.
         *
         * @return The value.
         */

        public Apfloat q(long n)
            throws ApfloatRuntimeException;
    }

    /**
     * Abstract base class for the binary splitting series.
     */

    protected static abstract class AbstractBinarySplittingSeries
        implements BinarySplittingSeries
    {
        /**
         * Construct a binary splitting series with the specified precision and radix.
         *
         * @param precision The target precision.
         * @param radix The radix to be used.
         */

        protected AbstractBinarySplittingSeries(long precision, int radix)
        {
            this.precision = precision;
            this.radix = radix;
        }

        /**
         * Target precision.
         */

        protected long precision;

        /**
         * Radix to be used.
         */

        protected int radix;

        private static final long serialVersionUID = 1L;
    }

    /**
     * Chudnovskys' algorithm terms for the binary splitting series.
     */

    protected static class ChudnovskyBinarySplittingSeries
        extends AbstractBinarySplittingSeries
    {
        /**
         * Basic constructor.
         *
         * @param precision The precision.
         * @param radix The radix.
         */

        public ChudnovskyBinarySplittingSeries(long precision, int radix)
        {
            super(precision, radix);
            this.A = new Apfloat(13591409, precision, radix);
            this.B = new Apfloat(545140134, precision, radix);
            this.J = new Apfloat(10939058860032000L, precision, radix);
            this.ONE = new Apfloat(1, precision, radix);
            this.TWO = new Apfloat(2, precision, radix);
            this.FIVE = new Apfloat(5, precision, radix);
            this.SIX = new Apfloat(6, precision, radix);
        }

        @Override
        public Apfloat a(long n)
            throws ApfloatRuntimeException
        {
            Apfloat s = new Apfloat(n, Apfloat.INFINITE, this.radix),
                    v = this.A.add(this.B.multiply(s));

            v = ((n & 1) == 0 ? v : v.negate());

            return v;
        }

        @Override
        public Apfloat p(long n)
            throws ApfloatRuntimeException
        {
            Apfloat v;

            if (n == 0)
            {
                v = this.ONE;
            }
            else
            {
                Apfloat f = new Apfloat(n, Apfloat.INFINITE, this.radix),
                        sixf = this.SIX.multiply(f);

                v = sixf.subtract(this.ONE).multiply(this.TWO.multiply(f).subtract(this.ONE)).multiply(sixf.subtract(this.FIVE));
            }

            return v;
        }

        @Override
        public Apfloat q(long n)
            throws ApfloatRuntimeException
        {
            Apfloat v;

            if (n == 0)
            {
                v = this.ONE;
            }
            else
            {
                Apfloat f = new Apfloat(n, Apfloat.INFINITE, this.radix);

                v = this.J.multiply(f.multiply(f).multiply(f));
            }

            return v;
        }

        private static final long serialVersionUID = 1L;

        private final Apfloat A;
        private final Apfloat B;
        private final Apfloat J;
        private final Apfloat ONE;
        private final Apfloat TWO;
        private final Apfloat FIVE;
        private final Apfloat SIX;
    }

    /**
     * Ramanujan's algorithm terms for the binary splitting series.
     */

    protected static class RamanujanBinarySplittingSeries
        extends AbstractBinarySplittingSeries
    {
        /**
         * Basic constructor.
         *
         * @param precision The precision.
         * @param radix The radix.
         */

        public RamanujanBinarySplittingSeries(long precision, int radix)
        {
            super(precision, radix);
            this.A = new Apfloat(1103, precision, radix);
            this.B = new Apfloat(26390, precision, radix);
            this.J = new Apfloat(3073907232L, precision, radix);
            this.ONE = new Apfloat(1, precision, radix);
            this.TWO = new Apfloat(2, precision, radix);
            this.THREE = new Apfloat(3, precision, radix);
            this.FOUR = new Apfloat(4, precision, radix);
        }

        @Override
        public Apfloat a(long n)
            throws ApfloatRuntimeException
        {
            Apfloat s = new Apfloat(n, Apfloat.INFINITE, this.radix),
                    v = this.A.add(this.B.multiply(s));

            return v;
        }

        @Override
        public Apfloat p(long n)
            throws ApfloatRuntimeException
        {
            Apfloat v;

            if (n == 0)
            {
                v = this.ONE;
            }
            else
            {
                Apfloat f = new Apfloat(n, Apfloat.INFINITE, this.radix),
                        fourf = this.FOUR.multiply(f);

                v = fourf.subtract(this.ONE).multiply(this.TWO.multiply(f).subtract(this.ONE)).multiply(fourf.subtract(this.THREE));
            }

            return v;
        }

        @Override
        public Apfloat q(long n)
            throws ApfloatRuntimeException
        {
            Apfloat v;

            if (n == 0)
            {
                v = this.ONE;
            }
            else
            {
                Apfloat f = new Apfloat(n, Apfloat.INFINITE, this.radix);

                v = this.J.multiply(f.multiply(f).multiply(f));
            }

            return v;
        }

        private static final long serialVersionUID = 1L;

        private final Apfloat A;
        private final Apfloat B;
        private final Apfloat J;
        private final Apfloat ONE;
        private final Apfloat TWO;
        private final Apfloat THREE;
        private final Apfloat FOUR;
    }

    /**
     * Class for implementing the binary splitting algorithm.
     */

    protected static class BinarySplittingPiCalculator
        implements Serializable
    {
        /**
         * Construct a pi calculator with the specified precision and radix.
         *
         * @param series The binary splitting series to be used.
         */

        public BinarySplittingPiCalculator(BinarySplittingSeries series)
        {
            this.series = series;
        }

        /**
         * Entry point for the binary splitting algorithm.
         *
         * @param n1 Start term.
         * @param n2 End term.
         * @param T Algorithm parameter.
         * @param Q Algorithm parameter.
         * @param P Algorithm parameter.
         * @param progressIndicator Class to print out the progress of the calculation.
         */

        public void r(long n1, long n2, ApfloatHolder T, ApfloatHolder Q, ApfloatHolder P, BinarySplittingProgressIndicator progressIndicator)
            throws ApfloatRuntimeException
        {
            checkAlive();

            assert (n1 != n2);
            long length = n2 - n1;

            if (length == 1)
            {
                Apfloat p0 = p(n1);

                T.setApfloat(a(n1).multiply(p0));
                Q.setApfloat(q(n1));
                if (P != null) P.setApfloat(p0);
            }
            else
            {
                long nMiddle = n1 + n2 >> 1;
                ApfloatHolder LT = new ApfloatHolder(),
                              LQ = new ApfloatHolder(),
                              LP = new ApfloatHolder();

                r(n1, nMiddle, LT, LQ, LP, progressIndicator);
                r(nMiddle, n2, T, Q, P, progressIndicator);

                T.setApfloat(Q.getApfloat().multiply(LT.getApfloat()).add(LP.getApfloat().multiply(T.getApfloat())));
                Q.setApfloat(LQ.getApfloat().multiply(Q.getApfloat()));
                if (P != null) P.setApfloat(LP.getApfloat().multiply(P.getApfloat()));
            }

            if (progressIndicator != null)
            {
                progressIndicator.progress(n1, n2);
            }
        }

        private Apfloat a(long n)
            throws ApfloatRuntimeException
        {
            return this.series.a(n);
        }

        private Apfloat p(long n)
            throws ApfloatRuntimeException
        {
            return this.series.p(n);
        }

        private Apfloat q(long n)
            throws ApfloatRuntimeException
        {
            return this.series.q(n);
        }

        private static final long serialVersionUID = 1L;

        private BinarySplittingSeries series;
    }

    /**
     * Basic class for calculating pi using the Chudnovskys' binary splitting algorithm.
     */

    public static class ChudnovskyPiCalculator
        implements Operation
    {
        /**
         * Construct a pi calculator with the specified precision and radix.
         *
         * @param precision The target precision.
         * @param radix The radix to be used.
         */

        public ChudnovskyPiCalculator(long precision, int radix)
            throws ApfloatRuntimeException
        {
            this(new BinarySplittingPiCalculator(new ChudnovskyBinarySplittingSeries(precision, radix)), precision, radix);
        }

        /**
         * Construct a pi calculator with the specified binary splitting algorithm.
         *
         * @param calculator The binary splitting algorithm to be used.
         * @param precision The target precision.
         * @param radix The radix to be used.
         */

        protected ChudnovskyPiCalculator(BinarySplittingPiCalculator calculator, long precision, int radix)
            throws ApfloatRuntimeException
        {
            this.calculator = calculator;
            this.precision = precision;
            this.radix = radix;
        }

        /**
         * Calculate pi using the Chudnovskys' binary splitting algorithm.
         */

        @Override
        public Apfloat execute()
        {
            Pi.err.println("Using the Chudnovsky brothers' binary splitting algorithm");

            ApfloatHolder T = new ApfloatHolder(),
                          Q = new ApfloatHolder();

            // Perform the calculation of T, Q and P to requested precision only, to improve performance

            long terms = (long) ((double) this.precision * Math.log((double) this.radix) / 32.654450041768516);

            long time = System.currentTimeMillis();
            this.calculator.r(0, terms + 1, T, Q, null, new BinarySplittingProgressIndicator(terms));
            time = System.currentTimeMillis() - time;

            Pi.err.println("100% complete, elapsed time " + time / 1000.0 + " seconds");
            Pi.err.printf("Final value ");

            time = System.currentTimeMillis();
            Apfloat t = T.getApfloat(),
                    q = Q.getApfloat();
            checkAlive();
            Apfloat factor = ApfloatMath.inverseRoot(new Apfloat(1823176476672000L, this.precision, this.radix), 2);
            checkAlive();
            Apfloat pi = ApfloatMath.inverseRoot(factor.multiply(t), 1).multiply(q);
            time = System.currentTimeMillis() - time;

            Pi.err.println("took " + time / 1000.0 + " seconds");

            return pi;
        }

        private static final long serialVersionUID = 1L;

        private BinarySplittingPiCalculator calculator;
        private long precision;
        private int radix;
    }

    /**
     * Basic class for calculating pi using the Ramanujan binary splitting algorithm.
     */

    public static class RamanujanPiCalculator
        implements Operation
    {
        /**
         * Construct a pi calculator with the specified precision and radix.
         *
         * @param precision The target precision.
         * @param radix The radix to be used.
         */

        public RamanujanPiCalculator(long precision, int radix)
            throws ApfloatRuntimeException
        {
            this(new BinarySplittingPiCalculator(new RamanujanBinarySplittingSeries(precision, radix)), precision, radix);
        }

        /**
         * Construct a pi calculator with the specified binary splitting algorithm.
         *
         * @param calculator The binary splitting algorithm to be used.
         * @param precision The target precision.
         * @param radix The radix to be used.
         */

        protected RamanujanPiCalculator(BinarySplittingPiCalculator calculator, long precision, int radix)
            throws ApfloatRuntimeException
        {
            this.calculator = calculator;
            this.precision = precision;
            this.radix = radix;
        }

        /**
         * Calculate pi using the Ramanujan binary splitting algorithm.
         */

        @Override
        public Apfloat execute()
        {
            Pi.err.println("Using the Ramanujan binary splitting algorithm");

            ApfloatHolder T = new ApfloatHolder(),
                          Q = new ApfloatHolder();

            // Perform the calculation of T, Q and P to requested precision only, to improve performance

            long terms = (long) ((double) this.precision * Math.log((double) this.radix) / 18.38047940053836);

            long time = System.currentTimeMillis();
            this.calculator.r(0, terms + 1, T, Q, null, new BinarySplittingProgressIndicator(terms));
            time = System.currentTimeMillis() - time;

            Pi.err.println("100% complete, elapsed time " + time / 1000.0 + " seconds");
            Pi.err.printf("Final value ");

            time = System.currentTimeMillis();
            Apfloat t = T.getApfloat(),
                    q = Q.getApfloat();
            checkAlive();
            Apfloat factor = ApfloatMath.inverseRoot(new Apfloat(8, this.precision, this.radix), 2);
            checkAlive();
            Apfloat pi = ApfloatMath.inverseRoot(t, 1).multiply(factor).multiply(new Apfloat(9801, Apfloat.INFINITE, this.radix)).multiply(q);
            time = System.currentTimeMillis() - time;

            Pi.err.println("took " + time / 1000.0 + " seconds");

            return pi;
        }

        private static final long serialVersionUID = 1L;

        private BinarySplittingPiCalculator calculator;
        private long precision;
        private int radix;
    }

    /**
     * Indicates progress of the pi calculation using
     * the binary splitting algorithm.

* * This implementation is thread safe for multiple * threads to use concurrently. */ public static class BinarySplittingProgressIndicator implements Serializable { /** * Construct a progress indicator with the specified * number of terms of the series. * * @param terms Total number of terms to be calculated. */ public BinarySplittingProgressIndicator(long terms) { this.totalElements = (long) (terms * (Math.log((double) terms) / Math.log(2.0) + 1.0)) + 1; this.currentElements = new AtomicLong(); // Use atomic long for thread safe but non-blocking access } /** * Advances the progress. * * @param n1 First term that has been calculated. * @param n2 Last term that has been calculated, minus one. */ public void progress(long n1, long n2) { long length = n2 - n1; // For small ranges the amount of progress is advanced in one chunk, including the progress of all the recursive steps long addedElements; if (length < PROGRESS_RECURSION_THRESHOLD >> 1) { // Sub-range of a small range, was progressed already return; } else if (length < PROGRESS_RECURSION_THRESHOLD) { // Small range, calculate the recursive progress addedElements = recursiveLength(length); } else { // Large range, calculate just this step addedElements = length; } long oldElements = this.currentElements.getAndAdd(addedElements); long elements = oldElements + addedElements; int oldPercentComplete = (int) (100 * oldElements / this.totalElements); int percentComplete = (int) (100 * elements / this.totalElements); if (percentComplete != oldPercentComplete) { Pi.err.printf(percentComplete + "%% complete\r"); } } private long recursiveLength(long length) { long recursiveLength; if (length == 1) { recursiveLength = 1; } else if (length == PROGRESS_RECURSION_THRESHOLD - 1) { // Borderline case, half of this will be calculated separately recursiveLength = recursiveLength(length >> 1) + length; } else { long halfLength = length >> 1; recursiveLength = recursiveLength(halfLength) + recursiveLength(length - halfLength) + length; } return recursiveLength; } private static final long serialVersionUID = 1L; private static final long PROGRESS_RECURSION_THRESHOLD = 32; private long totalElements; private AtomicLong currentElements; } /** * Calculates pi using the Gauss-Legendre algorithm. */ public static class GaussLegendrePiCalculator implements Operation { /** * Construct a pi calculator with the specified precision and radix. * * @param precision The target precision. * @param radix The radix to be used. */ public GaussLegendrePiCalculator(long precision, int radix) { this.precision = precision; this.radix = radix; } /** * Calculate pi using the Gauss-Legendre iteration. */ @Override public Apfloat execute() { Pi.err.println("Using the Gauss-Legendre iteration"); int iterations = 0; while (gaussLegendrePrecision(iterations, 4, this.radix) < this.precision) { iterations++; } Pi.err.println("Total " + iterations + " iterations"); Pi.err.printf("Initial values "); long time = System.currentTimeMillis(); Apfloat two = new Apfloat(2, this.precision, this.radix), four = new Apfloat(4, this.precision, this.radix), a = new Apfloat(1, this.precision, this.radix), b = ApfloatMath.inverseRoot(two, 2), t = a.divide(four); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); for (int i = 0; i < iterations; i++) { checkAlive(); Pi.err.printf("Iteration " + (i + 1) + " "); time = System.currentTimeMillis(); Apfloat tmp = a; a = a.add(b).divide(two); checkAlive(); b = tmp.multiply(b); checkAlive(); b = ApfloatMath.sqrt(b); checkAlive(); t = t.subtract(new Apfloat(1L << i, this.precision, this.radix).multiply(ApfloatMath.pow(tmp.subtract(a), 2))); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); } checkAlive(); Pi.err.printf("Final value "); time = System.currentTimeMillis(); a = a.add(b); t = four.multiply(t); Apfloat pi = ApfloatMath.pow(a, 2).divide(t); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); return pi; } // What precision is achieved with k Gauss-Legendre iterations private static long gaussLegendrePrecision(int k, int r, int radix) { return (long) ((Math.pow(2.0, (double) k) * Math.sqrt((double) r) * Math.PI - Math.log(16.0 * Math.sqrt((double) r)) - k * Math.log(2.0)) / Math.log((double) radix)); } private static final long serialVersionUID = 1L; private long precision; private int radix; } /** * Calculates pi using the Borweins' quartic algorithm. */ public static class BorweinPiCalculator implements Operation { /** * Construct a pi calculator with the specified precision and radix. * * @param precision The target precision. * @param radix The radix to be used. */ public BorweinPiCalculator(long precision, int radix) { this.precision = precision; this.radix = radix; } /** * Calculate pi using the Borweins' quartic iteration. */ @Override public Apfloat execute() { Pi.err.println("Using the Borweins' quartic iteration"); int iterations = 0; while (borweinPrecision(iterations, 4, this.radix) < this.precision) { iterations++; } Pi.err.println("Total " + iterations + " iterations"); Pi.err.printf("Initial values "); long time = System.currentTimeMillis(); Apfloat one = new Apfloat(1, this.precision, this.radix), two = new Apfloat(2, this.precision, this.radix), four = new Apfloat(4, this.precision, this.radix), y = ApfloatMath.sqrt(two).subtract(one), a = two.subtract(four.multiply(y)); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); for (int i = 0; i < iterations; i++) { checkAlive(); Pi.err.printf("Iteration " + (i + 1) + " "); time = System.currentTimeMillis(); Apfloat tmp = ApfloatMath.pow(y, 4); y = one.subtract(tmp); checkAlive(); y = ApfloatMath.inverseRoot(y, 4); checkAlive(); y = y.subtract(one).divide(y.add(one)); checkAlive(); tmp = ApfloatMath.pow(y.add(one), 2); checkAlive(); a = a.multiply(tmp).multiply(tmp); checkAlive(); a = a.subtract(new Apfloat(1L << (2 * i + 3), this.precision, this.radix).multiply(y).multiply(tmp.subtract(y))); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); } checkAlive(); Pi.err.printf("Final value "); time = System.currentTimeMillis(); Apfloat pi = one.divide(a); time = System.currentTimeMillis() - time; Pi.err.println("took " + time / 1000.0 + " seconds"); return pi; } // What precision is achieved with k Borweins' quartic iterations private static long borweinPrecision(int k, int r, int radix) { return (long) ((Math.pow(4.0, (double) k) * Math.sqrt((double) r) * Math.PI - Math.log(16.0 * Math.sqrt((double) r)) - k * Math.log(4.0)) / Math.log((double) radix)); } private static final long serialVersionUID = 1L; private long precision; private int radix; } /** * Parse a long from an argument. * * @param arg The string to be parsed. * @param name Description of the argument. * @param minValue Minimum allowed value. * @param maxValue Maximum allowed value. * * @return Valid long. */ protected static long getLong(String arg, String name, long minValue, long maxValue) { long value = 0; try { value = Long.parseLong(arg); if (value < minValue || value > maxValue) { throw new NumberFormatException(); } } catch (NumberFormatException nfe) { System.err.println("Invalid " + name + ": " + arg); System.exit(1); } return value; } /** * Parse an integer from an argument. * * @param arg The string to be parsed. * @param name Description of the argument. * @param minValue Minimum allowed value. * @param maxValue Maximum allowed value. * * @return Valid integer. */ protected static int getInt(String arg, String name, int minValue, int maxValue) { return (int) getLong(arg, name, minValue, maxValue); } /** * Parse the precision from an argument. * * @param arg The string to be parsed. * * @return Valid precision. */ protected static long getPrecision(String arg) { return getLong(arg, "digits", 1, Apfloat.INFINITE - 1); } /** * Parse the radix from an argument. * * @param arg The string to be parsed. * * @return Valid radix. */ protected static int getRadix(String arg) { return getInt(arg, "radix", Character.MIN_RADIX, Character.MAX_RADIX); } private static void dump() { ApfloatContext ctx = ApfloatContext.getContext(); Pi.err.println("builderFactory = " + ctx.getBuilderFactory().getClass().getName()); Pi.err.println("maxMemoryBlockSize = " + ctx.getMaxMemoryBlockSize()); Pi.err.println("cacheL1Size = " + ctx.getCacheL1Size()); Pi.err.println("cacheL2Size = " + ctx.getCacheL2Size()); Pi.err.println("cacheBurst = " + ctx.getCacheBurst()); Pi.err.println("memoryThreshold = " + ctx.getMemoryThreshold()); Pi.err.println("sharedMemoryTreshold = " + ctx.getSharedMemoryTreshold()); Pi.err.println("blockSize = " + ctx.getBlockSize()); Pi.err.println("numberOfProcessors = " + ctx.getNumberOfProcessors()); } /** * Execute an operation and display some additional information. * The return value of the operation is written to {@link #out}. * * @param precision The precision to be used. * @param radix The radix to be used. * @param operation The operation to execute. * * @exception IOException In case writing the output fails. */ public static void run(long precision, int radix, Operation operation) throws IOException, ApfloatRuntimeException { dump(); Pi.err.println("Calculating pi to " + precision + " radix-" + radix + " digits"); long time = System.currentTimeMillis(); Apfloat pi = operation.execute(); time = System.currentTimeMillis() - time; pi.writeTo(Pi.out, true); Pi.out.println(); Pi.err.println("Total elapsed time " + time / 1000.0 + " seconds"); } /** * Set the output stream for the result printout. * * @param out The output stream. */ public static void setOut(PrintWriter out) { Pi.out = out; } /** * Get the output stream for the result printout. * * @return The output stream. */ public static PrintWriter getOut() { return Pi.out; } /** * Set the output stream for status messages printout. * * @param err The output stream. */ public static void setErr(PrintWriter err) { Pi.err = err; } /** * Get the output stream for status messages printout. * * @return The output stream. */ public static PrintWriter getErr() { return Pi.err; } /** * Set whether the program should stop executing. * * @param isAlive true to keep running the program, false to stop. */ public static void setAlive(boolean isAlive) { Pi.isAlive = isAlive; } Pi() { } /** * Command-line entry point. * * @param args Command-line parameters. * * @exception IOException In case writing the output fails. */ public static void main(String[] args) throws IOException, ApfloatRuntimeException { if (args.length < 1) { System.err.println("USAGE: Pi digits [method] [radix]"); System.err.println(" method: 0 = Chudnovskys' binsplit"); System.err.println(" 1 = Ramanujan binsplit"); System.err.println(" 2 = Gauss-Legendre"); System.err.println(" 3 = Borweins' quartic"); System.err.println(" radix must be 2...36"); return; } long precision = getPrecision(args[0]); int method = (args.length > 1 ? getInt(args[1], "method", 0, 3) : 0), radix = (args.length > 2 ? getRadix(args[2]) : ApfloatContext.getContext().getDefaultRadix()); Operation operation; switch (method) { case 0: operation = new ChudnovskyPiCalculator(precision, radix); break; case 1: operation = new RamanujanPiCalculator(precision, radix); break; case 2: operation = new GaussLegendrePiCalculator(precision, radix); break; default: operation = new BorweinPiCalculator(precision, radix); } setOut(new PrintWriter(System.out, true)); setErr(new PrintWriter(System.err, true)); run(precision, radix, operation); } /** * Check whether the program should stop executing. * * @exception ThreadDeath in case {@link #setAlive(boolean)} has been set to false. */ protected static void checkAlive() { if (!Pi.isAlive) { throw new ThreadDeath(); } } /** * Output stream for the result printout. */ protected static PrintWriter out; /** * Output stream for status messages printout. */ protected static PrintWriter err; // Interactive execution stop check private static volatile boolean isAlive = true; }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy