All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apfloat.internal.DoubleKaratsubaConvolutionStrategy Maven / Gradle / Ivy

The newest version!
/*
 * MIT License
 *
 * Copyright (c) 2002-2023 Mikko Tommila
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
package org.apfloat.internal;

import org.apfloat.ApfloatContext;
import org.apfloat.ApfloatRuntimeException;
import org.apfloat.spi.DataStorageBuilder;
import org.apfloat.spi.DataStorage;

/**
 * Convolution strategy using the Karatsuba algorithm.
 * The complexity of the algorithm is O(nlog(3)/log(2)) as
 * the operands are split to two and multiplied using three multiplications
 * (and five additions / subtractions). This splitting is done recursively
 * until some cut-off point where the basic O(n2) algorithm is
 * applied. The Karatsuba algorithm is faster than the basic O(n2)
 * multiplication algorithm for medium size numbers larger than some certain
 * size. For very large numbers, the transform-based convolution algorithms
 * are faster.
 *
 * @since 1.4
 * @version 1.4
 * @author Mikko Tommila
 */

public class DoubleKaratsubaConvolutionStrategy
    extends DoubleMediumConvolutionStrategy
{
    /**
     * Cut-off point for Karatsuba / basic convolution.

* * Convolutions where the shorter number is at most this long * are calculated using the basic O(n2) algorithm * i.e. super.convolute(). */ public static final int CUTOFF_POINT = 15; /** * Creates a convolution strategy using the specified radix. * * @param radix The radix that will be used. */ public DoubleKaratsubaConvolutionStrategy(int radix) { super(radix); } @Override public DataStorage convolute(DataStorage x, DataStorage y, long resultSize) throws ApfloatRuntimeException { if (Math.min(x.getSize(), y.getSize()) <= CUTOFF_POINT) { // The numbers are too short for Karatsuba to have any advantage, fall back to O(n^2) algorithm return super.convolute(x, y, resultSize); } DataStorage shortStorage, longStorage; if (x.getSize() > y.getSize()) { shortStorage = y; longStorage = x; } else { shortStorage = x; longStorage = y; } long shortSize = shortStorage.getSize(), longSize = longStorage.getSize(), size = shortSize + longSize, halfSize = longSize + 1 >> 1, // Split point for recursion, round up x1size = longSize - halfSize, x2size = halfSize, y1size = shortSize - halfSize; // y2size = halfSize ApfloatContext ctx = ApfloatContext.getContext(); DataStorageBuilder dataStorageBuilder = ctx.getBuilderFactory().getDataStorageBuilder(); DataStorage resultStorage = dataStorageBuilder.createDataStorage(size * Double.BYTES); resultStorage.setSize(size); if (y1size <= 0) { // The shorter number is half of the longer number or less, use simplified algorithm DataStorage.Iterator dst = resultStorage.iterator(DataStorage.WRITE, size, 0), src1 = null; double carry = 0; long i = longSize, xSize; // Calculate sub-results in blocks of size shortSize do { xSize = Math.min(i, shortSize); x = longStorage.subsequence(i - xSize, xSize); y = shortStorage; // Calculate sub-convolutions recursively DataStorage a = convolute(x, y, xSize + shortSize); assert (a.getSize() == xSize + shortSize); // Add the sub-results together DataStorage.Iterator src2 = a.iterator(DataStorage.READ, xSize + shortSize, 0); carry = baseAdd(src1, src2, carry, dst, shortSize); src1 = src2; i -= shortSize; } while (i > 0); // Propagate carry through the last sub-result and store to result data carry = baseAdd(src1, null, carry, dst, xSize); assert (carry == 0); } else { // The numbers are roughly equal size (shorter is more than half of the longer), use Karatsuba algorithm DataStorage x1 = longStorage.subsequence(0, x1size), x2 = longStorage.subsequence(x1size, x2size), y1 = shortStorage.subsequence(0, y1size), y2 = shortStorage.subsequence(y1size, halfSize); // Calculate a = x1 + x2 DataStorage a = add(x1, x2); // Calculate b = y1 + y2 DataStorage b = add(y1, y2); // Calculate sub-convolutions recursively DataStorage c = convolute(a, b, a.getSize() + b.getSize()); a = convolute(x1, y1, x1size + y1size); b = convolute(x2, y2, 2 * halfSize); // Calculate c = c - a - b subtract(c, a); subtract(c, b); long cSize = c.getSize(), c1size = cSize - halfSize; if (c1size > x1size + y1size) { // We know that the top one or two words of c are zero // Omit them to avoid later having c1size > x1size + y1size long zeros = c1size - x1size - y1size; assert (isZero(c, 0)); assert (zeros == 1 || isZero(c, 1)); assert (zeros <= 2); cSize -= zeros; c1size -= zeros; c = c.subsequence(zeros, cSize); } assert (a.getSize() == x1size + y1size); assert (b.getSize() == 2 * halfSize); assert (cSize >= 2 * halfSize && cSize <= 2 * halfSize + 2); assert (c1size <= x1size + y1size); // Add the sub-results a + b + c together DataStorage.Iterator src1 = a.iterator(DataStorage.READ, x1size + y1size, 0), src2 = b.iterator(DataStorage.READ, 2 * halfSize, 0), src3 = c.iterator(DataStorage.READ, cSize, 0), dst = resultStorage.iterator(DataStorage.WRITE, size, 0); double carry = 0; carry = baseAdd(src2, null, carry, dst, halfSize); carry = baseAdd(src2, src3, carry, dst, halfSize); carry = baseAdd(src1, src3, carry, dst, c1size); carry = baseAdd(src1, null, carry, dst, x1size + y1size - c1size); assert (carry == 0); } return resultStorage; } // Return x1 + x2 private DataStorage add(DataStorage x1, DataStorage x2) { long x1size = x1.getSize(), x2size = x2.getSize(); assert (x1size <= x2size); long size = x2size + 1; ApfloatContext ctx = ApfloatContext.getContext(); DataStorageBuilder dataStorageBuilder = ctx.getBuilderFactory().getDataStorageBuilder(); DataStorage resultStorage = dataStorageBuilder.createDataStorage(size * Double.BYTES); resultStorage.setSize(size); // Calculate x1 + x2 DataStorage.Iterator src1 = x1.iterator(DataStorage.READ, x1size, 0), src2 = x2.iterator(DataStorage.READ, x2size, 0), dst = resultStorage.iterator(DataStorage.WRITE, size, 0); double carry = 0; carry = baseAdd(src1, src2, carry, dst, x1size); carry = baseAdd(src2, null, carry, dst, x2size - x1size); baseAdd(null, null, carry, dst, 1); // Set carry digit to the top word if (carry == 0) { resultStorage = resultStorage.subsequence(1, size - 1); // Omit zero top word } return resultStorage; } // x1 -= x2 private void subtract(DataStorage x1, DataStorage x2) { long x1size = x1.getSize(), x2size = x2.getSize(); assert (x1size >= x2size); DataStorage.Iterator src1 = x1.iterator(DataStorage.READ_WRITE, x1size, 0), src2 = x2.iterator(DataStorage.READ, x2size, 0), dst = src1; double carry = 0; carry = baseSubtract(src1, src2, carry, dst, x2size); carry = baseSubtract(src1, null, carry, dst, x1size - x2size); assert (carry == 0); } private boolean isZero(DataStorage x, long index) { DataStorage.Iterator i = x.iterator(DataStorage.READ, index, index + 1); double data = i.getDouble(); i.next(); return data == 0; } private static final long serialVersionUID = 3605808557478224821L; }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy