All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apfloat.internal.FloatMediumConvolutionStrategy Maven / Gradle / Ivy

The newest version!
/*
 * MIT License
 *
 * Copyright (c) 2002-2023 Mikko Tommila
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
package org.apfloat.internal;

import org.apfloat.ApfloatContext;
import org.apfloat.ApfloatRuntimeException;
import org.apfloat.spi.ConvolutionStrategy;
import org.apfloat.spi.DataStorageBuilder;
import org.apfloat.spi.DataStorage;

/**
 * Medium-length convolution strategy.
 * Performs a simple O(n2) multiplication when the size of one operand is relatively short.
 *
 * @version 1.9.0
 * @author Mikko Tommila
 */

public class FloatMediumConvolutionStrategy
    extends FloatBaseMath
    implements ConvolutionStrategy
{
    // Implementation notes:
    // - Assumes that the operands have been already truncated to match resultSize (the resultSize argument is ignored)
    // - This class probably shouldn't be converted to a single class using generics because there is some performance impact

    /**
     * Creates a convolution strategy using the specified radix.
     *
     * @param radix The radix that will be used.
     */

    public FloatMediumConvolutionStrategy(int radix)
    {
        super(radix);
    }

    @Override
    public DataStorage convolute(DataStorage x, DataStorage y, long resultSize)
        throws ApfloatRuntimeException
    {
        DataStorage shortStorage, longStorage;

        if (x.getSize() > y.getSize())
        {
            shortStorage = y;
            longStorage = x;
        }
        else
        {
            shortStorage = x;
            longStorage = y;
        }

        long shortSize = shortStorage.getSize(),
             longSize = longStorage.getSize(),
             size = shortSize + longSize;

        if (shortSize > Integer.MAX_VALUE)
        {
            throw new ApfloatInternalException("Too long shorter number, size = " + shortSize);
        }

        int bufferSize = (int) shortSize;

        ApfloatContext ctx = ApfloatContext.getContext();
        DataStorageBuilder dataStorageBuilder = ctx.getBuilderFactory().getDataStorageBuilder();
        DataStorage resultStorage = dataStorageBuilder.createDataStorage(size * Float.BYTES);
        resultStorage.setSize(size);

        DataStorage.Iterator src = longStorage.iterator(DataStorage.READ, longSize, 0),
                             dst = resultStorage.iterator(DataStorage.WRITE, size, 0),
                             tmpDst = new DataStorage.Iterator()                        // Cyclic iterator
                             {
                                 @Override
                                 public void next()
                                 {
                                     this.position++;
                                     this.position = (this.position == bufferSize ? 0 : this.position);
                                 }

                                 @Override
                                 public float getFloat()
                                 {
                                     return this.buffer[this.position];
                                 }

                                 @Override
                                 public void setFloat(float value)
                                 {
                                     this.buffer[this.position] = value;
                                 }

                                 private static final long serialVersionUID = 1L;

                                 private float[] buffer = new float[bufferSize];
                                 private int position = 0;
                             };

        for (long i = 0; i < longSize; i++)
        {
            DataStorage.Iterator tmpSrc = shortStorage.iterator(DataStorage.READ, shortSize, 0);        // Sub-optimal: this could be cyclic also

            float factor = src.getFloat(),          // Get one word of source data
                    carry = baseMultiplyAdd(tmpSrc, tmpDst, factor, 0, tmpDst, shortSize),
                    result = tmpDst.getFloat();       // Least significant word of the result

            dst.setFloat(result);     // Store one word of result

            tmpDst.setFloat(carry);   // Set carry from calculation as new last word in cyclic buffer

            tmpDst.next();              // Cycle buffer; current first word becomes last
            src.next();
            dst.next();
        }

        // Exhaust last words from temporary cyclic buffer and store them to result data
        for (int i = 0; i < bufferSize; i++)
        {
            float result = tmpDst.getFloat();
            dst.setFloat(result);

            tmpDst.next();
            dst.next();
        }

        return resultStorage;
    }

    private static final long serialVersionUID = -6697305140738370764L;
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy