All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.lang.invoke.CallSite Maven / Gradle / Ivy

There is a newer version: 0.54
Show newest version
/*
 * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.invoke;

/**
 * A {@code CallSite} is a holder for a variable {@link MethodHandle},
 * which is called its {@code target}.
 * An {@code invokedynamic} instruction linked to a {@code CallSite} delegates
 * all calls to the site's current target.
 * A {@code CallSite} may be associated with several {@code invokedynamic}
 * instructions, or it may be "free floating", associated with none.
 * In any case, it may be invoked through an associated method handle
 * called its {@linkplain #dynamicInvoker dynamic invoker}.
 * 

* {@code CallSite} is an abstract class which does not allow * direct subclassing by users. It has three immediate, * concrete subclasses that may be either instantiated or subclassed. *

    *
  • If a mutable target is not required, an {@code invokedynamic} instruction * may be permanently bound by means of a {@linkplain ConstantCallSite constant call site}. *
  • If a mutable target is required which has volatile variable semantics, * because updates to the target must be immediately and reliably witnessed by other threads, * a {@linkplain VolatileCallSite volatile call site} may be used. *
  • Otherwise, if a mutable target is required, * a {@linkplain MutableCallSite mutable call site} may be used. *
*

* A non-constant call site may be relinked by changing its target. * The new target must have the same {@linkplain MethodHandle#type() type} * as the previous target. * Thus, though a call site can be relinked to a series of * successive targets, it cannot change its type. *

* Here is a sample use of call sites and bootstrap methods which links every * dynamic call site to print its arguments:

{@code
static void test() throws Throwable {
    // THE FOLLOWING LINE IS PSEUDOCODE FOR A JVM INSTRUCTION
    InvokeDynamic[#bootstrapDynamic].baz("baz arg", 2, 3.14);
}
private static void printArgs(Object... args) {
  System.out.println(java.util.Arrays.deepToString(args));
}
private static final MethodHandle printArgs;
static {
  MethodHandles.Lookup lookup = MethodHandles.lookup();
  Class thisClass = lookup.lookupClass();  // (who am I?)
  printArgs = lookup.findStatic(thisClass,
      "printArgs", MethodType.methodType(void.class, Object[].class));
}
private static CallSite bootstrapDynamic(MethodHandles.Lookup caller, String name, MethodType type) {
  // ignore caller and name, but match the type:
  return new ConstantCallSite(printArgs.asType(type));
}
}
* @author John Rose, JSR 292 EG */ abstract public class CallSite { // The actual payload of this call site: /*package-private*/ MethodHandle target; // Note: This field is known to the JVM. Do not change. /** * Make a blank call site object with the given method type. * An initial target method is supplied which will throw * an {@link IllegalStateException} if called. *

* Before this {@code CallSite} object is returned from a bootstrap method, * it is usually provided with a more useful target method, * via a call to {@link CallSite#setTarget(MethodHandle) setTarget}. * @throws NullPointerException if the proposed type is null */ /*package-private*/ CallSite(MethodType type) { throw new IllegalStateException(); } /** * Make a call site object equipped with an initial target method handle. * @param target the method handle which will be the initial target of the call site * @throws NullPointerException if the proposed target is null */ /*package-private*/ CallSite(MethodHandle target) { target.type(); // null check this.target = target; } /** * Make a call site object equipped with an initial target method handle. * @param targetType the desired type of the call site * @param createTargetHook a hook which will bind the call site to the target method handle * @throws WrongMethodTypeException if the hook cannot be invoked on the required arguments, * or if the target returned by the hook is not of the given {@code targetType} * @throws NullPointerException if the hook returns a null value * @throws ClassCastException if the hook returns something other than a {@code MethodHandle} * @throws Throwable anything else thrown by the hook function */ /*package-private*/ CallSite(MethodType targetType, MethodHandle createTargetHook) throws Throwable { throw new IllegalStateException(); } /** * Returns the type of this call site's target. * Although targets may change, any call site's type is permanent, and can never change to an unequal type. * The {@code setTarget} method enforces this invariant by refusing any new target that does * not have the previous target's type. * @return the type of the current target, which is also the type of any future target */ public MethodType type() { // warning: do not call getTarget here, because CCS.getTarget can throw IllegalStateException return target.type(); } /** * Returns the target method of the call site, according to the * behavior defined by this call site's specific class. * The immediate subclasses of {@code CallSite} document the * class-specific behaviors of this method. * * @return the current linkage state of the call site, its target method handle * @see ConstantCallSite * @see VolatileCallSite * @see #setTarget * @see ConstantCallSite#getTarget * @see MutableCallSite#getTarget * @see VolatileCallSite#getTarget */ public abstract MethodHandle getTarget(); /** * Updates the target method of this call site, according to the * behavior defined by this call site's specific class. * The immediate subclasses of {@code CallSite} document the * class-specific behaviors of this method. *

* The type of the new target must be {@linkplain MethodType#equals equal to} * the type of the old target. * * @param newTarget the new target * @throws NullPointerException if the proposed new target is null * @throws WrongMethodTypeException if the proposed new target * has a method type that differs from the previous target * @see CallSite#getTarget * @see ConstantCallSite#setTarget * @see MutableCallSite#setTarget * @see VolatileCallSite#setTarget */ public abstract void setTarget(MethodHandle newTarget); /** * Produces a method handle equivalent to an invokedynamic instruction * which has been linked to this call site. *

* This method is equivalent to the following code: *

{@code
     * MethodHandle getTarget, invoker, result;
     * getTarget = MethodHandles.publicLookup().bind(this, "getTarget", MethodType.methodType(MethodHandle.class));
     * invoker = MethodHandles.exactInvoker(this.type());
     * result = MethodHandles.foldArguments(invoker, getTarget)
     * }
* * @return a method handle which always invokes this call site's current target */ public abstract MethodHandle dynamicInvoker(); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy