Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2009 Google Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
/**
* This is a near duplicate of {@link TimSort}, modified for use with
* arrays of objects that implement {@link Comparable}, instead of using
* explicit comparators.
*
*
If you are using an optimizing VM, you may find that ComparableTimSort
* offers no performance benefit over TimSort in conjunction with a
* comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
* If this is the case, you are better off deleting ComparableTimSort to
* eliminate the code duplication. (See Arrays.java for details.)
*
* @author Josh Bloch
*/
class ComparableTimSort {
/**
* This is the minimum sized sequence that will be merged. Shorter
* sequences will be lengthened by calling binarySort. If the entire
* array is less than this length, no merges will be performed.
*
* This constant should be a power of two. It was 64 in Tim Peter's C
* implementation, but 32 was empirically determined to work better in
* this implementation. In the unlikely event that you set this constant
* to be a number that's not a power of two, you'll need to change the
* {@link #minRunLength} computation.
*
* If you decrease this constant, you must change the stackLen
* computation in the TimSort constructor, or you risk an
* ArrayOutOfBounds exception. See listsort.txt for a discussion
* of the minimum stack length required as a function of the length
* of the array being sorted and the minimum merge sequence length.
*/
private static final int MIN_MERGE = 32;
/**
* The array being sorted.
*/
private final Object[] a;
/**
* When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times.
*/
private static final int MIN_GALLOP = 7;
/**
* This controls when we get *into* galloping mode. It is initialized
* to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
* random data, and lower for highly structured data.
*/
private int minGallop = MIN_GALLOP;
/**
* Maximum initial size of tmp array, which is used for merging. The array
* can grow to accommodate demand.
*
* Unlike Tim's original C version, we do not allocate this much storage
* when sorting smaller arrays. This change was required for performance.
*/
private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
/**
* Temp storage for merges.
*/
private Object[] tmp;
/**
* A stack of pending runs yet to be merged. Run i starts at
* address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that:
*
* runBase[i] + runLen[i] == runBase[i + 1]
*
* so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code.
*/
private int stackSize = 0; // Number of pending runs on stack
private final int[] runBase;
private final int[] runLen;
/**
* Creates a TimSort instance to maintain the state of an ongoing sort.
*
* @param a the array to be sorted
*/
private ComparableTimSort(Object[] a) {
this.a = a;
// Allocate temp storage (which may be increased later if necessary)
int len = a.length;
@SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
Object[] newArray = new Object[len < 2 * INITIAL_TMP_STORAGE_LENGTH ?
len >>> 1 : INITIAL_TMP_STORAGE_LENGTH];
tmp = newArray;
/*
* Allocate runs-to-be-merged stack (which cannot be expanded). The
* stack length requirements are described in listsort.txt. The C
* version always uses the same stack length (85), but this was
* measured to be too expensive when sorting "mid-sized" arrays (e.g.,
* 100 elements) in Java. Therefore, we use smaller (but sufficiently
* large) stack lengths for smaller arrays. The "magic numbers" in the
* computation below must be changed if MIN_MERGE is decreased. See
* the MIN_MERGE declaration above for more information.
*/
int stackLen = (len < 120 ? 5 :
len < 1542 ? 10 :
len < 119151 ? 19 : 40);
runBase = new int[stackLen];
runLen = new int[stackLen];
}
/*
* The next two methods (which are package private and static) constitute
* the entire API of this class. Each of these methods obeys the contract
* of the public method with the same signature in java.util.Arrays.
*/
static void sort(Object[] a) {
sort(a, 0, a.length);
}
static void sort(Object[] a, int lo, int hi) {
rangeCheck(a.length, lo, hi);
int nRemaining = hi - lo;
if (nRemaining < 2)
return; // Arrays of size 0 and 1 are always sorted
// If array is small, do a "mini-TimSort" with no merges
if (nRemaining < MIN_MERGE) {
int initRunLen = countRunAndMakeAscending(a, lo, hi);
binarySort(a, lo, hi, lo + initRunLen);
return;
}
/**
* March over the array once, left to right, finding natural runs,
* extending short natural runs to minRun elements, and merging runs
* to maintain stack invariant.
*/
ComparableTimSort ts = new ComparableTimSort(a);
int minRun = minRunLength(nRemaining);
do {
// Identify next run
int runLen = countRunAndMakeAscending(a, lo, hi);
// If run is short, extend to min(minRun, nRemaining)
if (runLen < minRun) {
int force = nRemaining <= minRun ? nRemaining : minRun;
binarySort(a, lo, lo + force, lo + runLen);
runLen = force;
}
// Push run onto pending-run stack, and maybe merge
ts.pushRun(lo, runLen);
ts.mergeCollapse();
// Advance to find next run
lo += runLen;
nRemaining -= runLen;
} while (nRemaining != 0);
// Merge all remaining runs to complete sort
assert lo == hi;
ts.mergeForceCollapse();
assert ts.stackSize == 1;
}
/**
* Sorts the specified portion of the specified array using a binary
* insertion sort. This is the best method for sorting small numbers
* of elements. It requires O(n log n) compares, but O(n^2) data
* movement (worst case).
*
* If the initial part of the specified range is already sorted,
* this method can take advantage of it: the method assumes that the
* elements from index {@code lo}, inclusive, to {@code start},
* exclusive are already sorted.
*
* @param a the array in which a range is to be sorted
* @param lo the index of the first element in the range to be sorted
* @param hi the index after the last element in the range to be sorted
* @param start the index of the first element in the range that is
* not already known to be sorted ({@code lo <= start <= hi})
*/
@SuppressWarnings("fallthrough")
private static void binarySort(Object[] a, int lo, int hi, int start) {
assert lo <= start && start <= hi;
if (start == lo)
start++;
for ( ; start < hi; start++) {
@SuppressWarnings("unchecked")
Comparable