java.util.HashSet Maven / Gradle / Ivy
/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
/**
* This class implements the Set interface, backed by a hash table
* (actually a HashMap instance). It makes no guarantees as to the
* iteration order of the set; in particular, it does not guarantee that the
* order will remain constant over time. This class permits the null
* element.
*
* This class offers constant time performance for the basic operations
* (add, remove, contains and size),
* assuming the hash function disperses the elements properly among the
* buckets. Iterating over this set requires time proportional to the sum of
* the HashSet instance's size (the number of elements) plus the
* "capacity" of the backing HashMap instance (the number of
* buckets). Thus, it's very important not to set the initial capacity too
* high (or the load factor too low) if iteration performance is important.
*
*
Note that this implementation is not synchronized.
* If multiple threads access a hash set concurrently, and at least one of
* the threads modifies the set, it must be synchronized externally.
* This is typically accomplished by synchronizing on some object that
* naturally encapsulates the set.
*
* If no such object exists, the set should be "wrapped" using the
* {@link Collections#synchronizedSet Collections.synchronizedSet}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the set:
* Set s = Collections.synchronizedSet(new HashSet(...));
*
* The iterators returned by this class's iterator method are
* fail-fast: if the set is modified at any time after the iterator is
* created, in any way except through the iterator's own remove
* method, the Iterator throws a {@link ConcurrentModificationException}.
* Thus, in the face of concurrent modification, the iterator fails quickly
* and cleanly, rather than risking arbitrary, non-deterministic behavior at
* an undetermined time in the future.
*
*
Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw ConcurrentModificationException on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: the fail-fast behavior of iterators
* should be used only to detect bugs.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @param the type of elements maintained by this set
*
* @author Josh Bloch
* @author Neal Gafter
* @see Collection
* @see Set
* @see TreeSet
* @see HashMap
* @since 1.2
*/
public class HashSet
extends AbstractSet
implements Set, Cloneable, java.io.Serializable
{
static final long serialVersionUID = -5024744406713321676L;
private transient HashMap map;
// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();
/**
* Constructs a new, empty set; the backing HashMap instance has
* default initial capacity (16) and load factor (0.75).
*/
public HashSet() {
map = new HashMap<>();
}
/**
* Constructs a new set containing the elements in the specified
* collection. The HashMap is created with default load factor
* (0.75) and an initial capacity sufficient to contain the elements in
* the specified collection.
*
* @param c the collection whose elements are to be placed into this set
* @throws NullPointerException if the specified collection is null
*/
public HashSet(Collection extends E> c) {
map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
addAll(c);
}
/**
* Constructs a new, empty set; the backing HashMap instance has
* the specified initial capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hash map
* @param loadFactor the load factor of the hash map
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive
*/
public HashSet(int initialCapacity, float loadFactor) {
map = new HashMap<>(initialCapacity, loadFactor);
}
/**
* Constructs a new, empty set; the backing HashMap instance has
* the specified initial capacity and default load factor (0.75).
*
* @param initialCapacity the initial capacity of the hash table
* @throws IllegalArgumentException if the initial capacity is less
* than zero
*/
public HashSet(int initialCapacity) {
map = new HashMap<>(initialCapacity);
}
/**
* Constructs a new, empty linked hash set. (This package private
* constructor is only used by LinkedHashSet.) The backing
* HashMap instance is a LinkedHashMap with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hash map
* @param loadFactor the load factor of the hash map
* @param dummy ignored (distinguishes this
* constructor from other int, float constructor.)
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive
*/
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
/**
* Returns an iterator over the elements in this set. The elements
* are returned in no particular order.
*
* @return an Iterator over the elements in this set
* @see ConcurrentModificationException
*/
public Iterator iterator() {
return map.keySet().iterator();
}
/**
* Returns the number of elements in this set (its cardinality).
*
* @return the number of elements in this set (its cardinality)
*/
public int size() {
return map.size();
}
/**
* Returns true if this set contains no elements.
*
* @return true if this set contains no elements
*/
public boolean isEmpty() {
return map.isEmpty();
}
/**
* Returns true if this set contains the specified element.
* More formally, returns true if and only if this set
* contains an element e such that
* (o==null ? e==null : o.equals(e)).
*
* @param o element whose presence in this set is to be tested
* @return true if this set contains the specified element
*/
public boolean contains(Object o) {
return map.containsKey(o);
}
/**
* Adds the specified element to this set if it is not already present.
* More formally, adds the specified element e to this set if
* this set contains no element e2 such that
* (e==null ? e2==null : e.equals(e2)).
* If this set already contains the element, the call leaves the set
* unchanged and returns false.
*
* @param e element to be added to this set
* @return true if this set did not already contain the specified
* element
*/
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
/**
* Removes the specified element from this set if it is present.
* More formally, removes an element e such that
* (o==null ? e==null : o.equals(e)),
* if this set contains such an element. Returns true if
* this set contained the element (or equivalently, if this set
* changed as a result of the call). (This set will not contain the
* element once the call returns.)
*
* @param o object to be removed from this set, if present
* @return true if the set contained the specified element
*/
public boolean remove(Object o) {
return map.remove(o)==PRESENT;
}
/**
* Removes all of the elements from this set.
* The set will be empty after this call returns.
*/
public void clear() {
map.clear();
}
/**
* Returns a shallow copy of this HashSet instance: the elements
* themselves are not cloned.
*
* @return a shallow copy of this set
*/
public Object clone() {
try {
HashSet newSet = (HashSet) super.clone();
newSet.map = (HashMap) map.clone();
return newSet;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
}