All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.jas.gbufd.RPseudoReductionSeq Maven / Gradle / Ivy

The newest version!
/*
 * $Id: RPseudoReductionSeq.java 4061 2012-07-27 12:03:20Z kredel $
 */

package edu.jas.gbufd;


import java.util.List;
import java.util.Map;

import org.apache.log4j.Logger;

import edu.jas.poly.ExpVector;
import edu.jas.poly.GenPolynomial;
import edu.jas.structure.RegularRingElem;


/**
 * Polynomial regular ring pseudo reduction sequential use algorithm. Implements
 * fraction free normalform algorithm.
 * @param  coefficient type
 * @author Heinz Kredel
 */

public class RPseudoReductionSeq> extends RReductionSeq implements
                RPseudoReduction {


    private static final Logger logger = Logger.getLogger(RPseudoReductionSeq.class);


    private final boolean debug = logger.isDebugEnabled();


    /**
     * Constructor.
     */
    public RPseudoReductionSeq() {
    }


    /**
     * Normalform using r-reduction.
     * @param Ap polynomial.
     * @param Pp polynomial list.
     * @return r-nf(Ap) with respect to Pp.
     */
    @Override
    @SuppressWarnings("unchecked")
    public GenPolynomial normalform(List> Pp, GenPolynomial Ap) {
        if (Pp == null || Pp.isEmpty()) {
            return Ap;
        }
        if (Ap == null || Ap.isZERO()) {
            return Ap;
        }
        int l;
        GenPolynomial[] P;
        synchronized (Pp) {
            l = Pp.size();
            P = (GenPolynomial[]) new GenPolynomial[l];
            //P = Pp.toArray();
            for (int i = 0; i < Pp.size(); i++) {
                P[i] = Pp.get(i);
            }
        }
        //System.out.println("l = " + l);
        Map.Entry m;
        ExpVector[] htl = new ExpVector[l];
        C[] lbc = (C[]) new RegularRingElem[l]; // want 
        GenPolynomial[] p = (GenPolynomial[]) new GenPolynomial[l];
        int i;
        int j = 0;
        for (i = 0; i < l; i++) {
            if (P[i] == null) {
                continue;
            }
            p[i] = P[i].abs();
            m = p[i].leadingMonomial();
            if (m != null) {
                p[j] = p[i];
                htl[j] = m.getKey();
                lbc[j] = m.getValue();
                j++;
            }
        }
        l = j;
        ExpVector e, f;
        C a;
        C r = null;
        boolean mt = false;
        GenPolynomial R = Ap.ring.getZERO();
        GenPolynomial Q = null;
        GenPolynomial S = Ap;
        while (S.length() > 0) {
            m = S.leadingMonomial();
            e = m.getKey();
            a = m.getValue();
            //System.out.println("--a = " + a);
            for (i = 0; i < l; i++) {
                mt = e.multipleOf(htl[i]);
                if (mt) {
                    C c = lbc[i];
                    //r = a.idempotent().multiply( c.idempotent() );
                    r = a.idempotentAnd(c);
                    mt = !r.isZERO(); // && mt
                    if (mt) {
                        f = e.subtract(htl[i]);
                        if (a.remainder(c).isZERO()) { //c.isUnit() ) {
                            a = a.divide(c);
                            if (a.isZERO()) {
                                throw new ArithmeticException("a.isZERO()");
                            }
                        } else {
                            c = c.fillOne();
                            S = S.multiply(c);
                            R = R.multiply(c);
                        }
                        Q = p[i].multiply(a, f);
                        S = S.subtract(Q);

                        f = S.leadingExpVector();
                        if (!e.equals(f)) {
                            a = Ap.ring.coFac.getZERO();
                            break;
                        }
                        a = S.leadingBaseCoefficient();
                    }
                }
            }
            if (!a.isZERO()) { //! mt ) { 
                //logger.debug("irred");
                R = R.sum(a, e);
                S = S.reductum();
            }
        }
        return R.abs(); // not monic if not boolean closed
    }


    /**
     * Normalform using r-reduction.
     * @param Pp polynomial list.
     * @param Ap polynomial.
     * @return ( nf(Ap), mf ) with respect to Pp and mf as multiplication factor
     *         for Ap.
     */
    @SuppressWarnings("unchecked")
    public PseudoReductionEntry normalformFactor(List> Pp, GenPolynomial Ap) {
        if (Ap == null) {
            return null;
        }
        C mfac = Ap.ring.getONECoefficient();
        PseudoReductionEntry pf = new PseudoReductionEntry(Ap, mfac);
        if (Pp == null || Pp.isEmpty()) {
            return pf;
        }
        if (Ap.isZERO()) {
            return pf;
        }
        int l;
        GenPolynomial[] P;
        synchronized (Pp) {
            l = Pp.size();
            P = (GenPolynomial[]) new GenPolynomial[l];
            //P = Pp.toArray();
            for (int i = 0; i < Pp.size(); i++) {
                P[i] = Pp.get(i);
            }
        }
        //System.out.println("l = " + l);
        Map.Entry m;
        ExpVector[] htl = new ExpVector[l];
        C[] lbc = (C[]) new RegularRingElem[l]; // want 
        GenPolynomial[] p = (GenPolynomial[]) new GenPolynomial[l];
        int i;
        int j = 0;
        for (i = 0; i < l; i++) {
            if (P[i] == null) {
                continue;
            }
            p[i] = P[i].abs();
            m = p[i].leadingMonomial();
            if (m != null) {
                p[j] = p[i];
                htl[j] = m.getKey();
                lbc[j] = m.getValue();
                j++;
            }
        }
        l = j;
        ExpVector e, f;
        C a;
        C r = null;
        boolean mt = false;
        GenPolynomial R = Ap.ring.getZERO();
        GenPolynomial Q = null;
        GenPolynomial S = Ap;
        while (S.length() > 0) {
            m = S.leadingMonomial();
            e = m.getKey();
            a = m.getValue();
            //System.out.println("--a = " + a);
            for (i = 0; i < l; i++) {
                mt = e.multipleOf(htl[i]);
                if (mt) {
                    C c = lbc[i];
                    //r = a.idempotent().multiply( c.idempotent() );
                    r = a.idempotentAnd(c);
                    mt = !r.isZERO(); // && mt
                    if (mt) {
                        f = e.subtract(htl[i]);
                        if (a.remainder(c).isZERO()) { //c.isUnit() ) {
                            a = a.divide(c);
                            if (a.isZERO()) {
                                throw new ArithmeticException("a.isZERO()");
                            }
                        } else {
                            c = c.fillOne();
                            S = S.multiply(c);
                            R = R.multiply(c);
                            mfac = mfac.multiply(c);
                        }
                        Q = p[i].multiply(a, f);
                        S = S.subtract(Q);

                        f = S.leadingExpVector();
                        if (!e.equals(f)) {
                            a = Ap.ring.coFac.getZERO();
                            break;
                        }
                        a = S.leadingBaseCoefficient();
                    }
                }
            }
            if (!a.isZERO()) { //! mt ) { 
                //logger.debug("irred");
                R = R.sum(a, e);
                S = S.reductum();
            }
        }
        pf = new PseudoReductionEntry(R, mfac); //.abs(); // not monic if not boolean closed
        return pf;
    }


    /**
     * Normalform with recording. Note: Only meaningfull if all divisions
     * are exact. Compute first the multiplication factor m with
     * normalform(Pp,Ap,m), then call this method with
     * normalform(row,Pp,m*Ap).
     * @param row recording matrix, is modified.
     * @param Pp a polynomial list for reduction.
     * @param Ap a polynomial.
     * @return nf(Pp,Ap), the normal form of Ap wrt. Pp.
     */
    @Override
    @SuppressWarnings("unchecked")
    public GenPolynomial normalform(List> row, List> Pp,
                    GenPolynomial Ap) {
        if (Pp == null || Pp.isEmpty()) {
            return Ap;
        }
        if (Ap == null || Ap.isZERO()) {
            return Ap;
        }
        int l;
        GenPolynomial[] P;
        synchronized (Pp) {
            l = Pp.size();
            P = (GenPolynomial[]) new GenPolynomial[l];
            //P = Pp.toArray();
            for (int i = 0; i < Pp.size(); i++) {
                P[i] = Pp.get(i);
            }
        }
        //System.out.println("l = " + l);
        Map.Entry m;
        ExpVector[] htl = new ExpVector[l];
        C[] lbc = (C[]) new RegularRingElem[l]; // want 
        GenPolynomial[] p = (GenPolynomial[]) new GenPolynomial[l];
        int i;
        int j = 0;
        for (i = 0; i < l; i++) {
            p[i] = P[i];
            m = p[i].leadingMonomial();
            if (m != null) {
                p[j] = p[i];
                htl[j] = m.getKey();
                lbc[j] = m.getValue();
                j++;
            }
        }
        l = j;
        ExpVector e, f;
        C a, b;
        C r = null;
        boolean mt = false;
        GenPolynomial fac = null;
        GenPolynomial zero = Ap.ring.getZERO();
        GenPolynomial R = Ap.ring.getZERO();
        GenPolynomial Q = null;
        GenPolynomial S = Ap;
        while (S.length() > 0) {
            m = S.leadingMonomial();
            e = m.getKey();
            a = m.getValue();
            for (i = 0; i < l; i++) {
                mt = e.multipleOf(htl[i]);
                if (mt) {
                    C c = lbc[i];
                    //r = a.idempotent().multiply( c.idempotent() );
                    r = a.idempotentAnd(c);
                    //System.out.println("r = " + r);
                    mt = !r.isZERO(); // && mt
                    if (mt) {
                        b = a.remainder(c);
                        if (b.isZERO()) {
                            a = a.divide(c);
                            if (a.isZERO()) {
                                throw new ArithmeticException("a.isZERO()");
                            }
                        } else {
                            c = c.fillOne();
                            S = S.multiply(c);
                            R = R.multiply(c);
                        }
                        f = e.subtract(htl[i]);
                        if (debug) {
                            logger.info("red div = " + f);
                        }
                        Q = p[i].multiply(a, f);
                        S = S.subtract(Q); // not ok with reductum

                        fac = row.get(i);
                        if (fac == null) {
                            fac = zero.sum(a, f);
                        } else {
                            fac = fac.sum(a, f);
                        }
                        row.set(i, fac);

                        f = S.leadingExpVector();
                        if (!e.equals(f)) {
                            a = Ap.ring.coFac.getZERO();
                            break;
                        }
                        a = S.leadingBaseCoefficient();
                    }
                }
            }
            if (!a.isZERO()) { //! mt ) { 
                //logger.debug("irred");
                R = R.sum(a, e);
                S = S.reductum();
            }
        }
        return R; //.abs(); // not monic if not boolean closed
    }


    /*
     * -------- boolean closure stuff -----------------------------------------
     * -------- is all in superclass
     */

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy