All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.jas.poly.GenSolvablePolynomialRing Maven / Gradle / Ivy

The newest version!
/*
 * $Id: GenSolvablePolynomialRing.java 4388 2013-04-27 19:38:16Z kredel $
 */

package edu.jas.poly;


import java.io.IOException;
import java.io.Reader;
import java.io.StringReader;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import org.apache.log4j.Logger;

import edu.jas.kern.PrettyPrint;
import edu.jas.kern.Scripting;
import edu.jas.structure.RingElem;
import edu.jas.structure.RingFactory;


/**
 * GenSolvablePolynomialRing generic solvable polynomial factory implementing
 * RingFactory and extending GenPolynomialRing factory; Factory for n-variate
 * ordered solvable polynomials over C. The non-commutative multiplication
 * relations are maintained in a relation table. Almost immutable object, except
 * variable names and relation table contents.
 * @param  coefficient type.
 * @author Heinz Kredel
 */

public class GenSolvablePolynomialRing> extends GenPolynomialRing {


    //  implements RingFactory< GenSolvablePolynomial > {


    /**
     * The solvable multiplication relations.
     */
    public final RelationTable table;


    /**
     * The constant polynomial 0 for this ring. Hides super ZERO.
     */
    public final GenSolvablePolynomial ZERO;


    /**
     * The constant polynomial 1 for this ring. Hides super ONE.
     */
    public final GenSolvablePolynomial ONE;


    private static final Logger logger = Logger.getLogger(GenSolvablePolynomialRing.class);


    private final boolean debug = logger.isDebugEnabled();


    /**
     * The constructor creates a solvable polynomial factory object with the
     * default term order and commutative relations.
     * @param cf factory for coefficients of type C.
     * @param n number of variables.
     */
    public GenSolvablePolynomialRing(RingFactory cf, int n) {
        this(cf, n, new TermOrder(), null, null);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the
     * default term order.
     * @param cf factory for coefficients of type C.
     * @param n number of variables.
     * @param rt solvable multiplication relations.
     */
    public GenSolvablePolynomialRing(RingFactory cf, int n, RelationTable rt) {
        this(cf, n, new TermOrder(), null, rt);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the
     * given term order and commutative relations.
     * @param cf factory for coefficients of type C.
     * @param n number of variables.
     * @param t a term order.
     */
    public GenSolvablePolynomialRing(RingFactory cf, int n, TermOrder t) {
        this(cf, n, t, null, null);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the
     * given term order.
     * @param cf factory for coefficients of type C.
     * @param n number of variables.
     * @param t a term order.
     * @param rt solvable multiplication relations.
     */
    public GenSolvablePolynomialRing(RingFactory cf, int n, TermOrder t, RelationTable rt) {
        this(cf, n, t, null, rt);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the
     * given term order and commutative relations.
     * @param cf factory for coefficients of type C.
     * @param n number of variables.
     * @param t a term order.
     * @param v names for the variables.
     */
    public GenSolvablePolynomialRing(RingFactory cf, int n, TermOrder t, String[] v) {
        this(cf, n, t, v, null);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the
     * given term order and commutative relations.
     * @param cf factory for coefficients of type C.
     * @param t a term order.
     * @param v names for the variables.
     */
    public GenSolvablePolynomialRing(RingFactory cf, TermOrder t, String[] v) {
        this(cf, v.length, t, v, null);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the
     * default term order.
     * @param cf factory for coefficients of type C.
     * @param v names for the variables.
     */
    public GenSolvablePolynomialRing(RingFactory cf, String[] v) {
        this(cf, v.length, new TermOrder(), v, null);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the
     * given term order.
     * @param cf factory for coefficients of type C.
     * @param n number of variables.
     * @param t a term order.
     * @param v names for the variables.
     * @param rt solvable multiplication relations.
     */
    public GenSolvablePolynomialRing(RingFactory cf, int n, TermOrder t, String[] v, RelationTable rt) {
        super(cf, n, t, v);
        if (rt == null) {
            table = new RelationTable(this);
        } else {
            table = rt;
        }
        ZERO = new GenSolvablePolynomial(this);
        C coeff = coFac.getONE();
        //evzero = ExpVector.create(nvar); // from super
        ONE = new GenSolvablePolynomial(this, coeff, evzero);
    }


    /**
     * The constructor creates a solvable polynomial factory object with the the
     * same term order, number of variables and variable names as the given
     * polynomial factory, only the coefficient factories differ and the
     * solvable multiplication relations are empty.
     * @param cf factory for coefficients of type C.
     * @param o other solvable polynomial ring.
     */
    public GenSolvablePolynomialRing(RingFactory cf, GenSolvablePolynomialRing o) {
        this(cf, o.nvar, o.tord, o.getVars(), null);
    }


    /**
     * Get the String representation.
     * @see java.lang.Object#toString()
     */
    @Override
    public String toString() {
        String res = super.toString();
        if (PrettyPrint.isTrue()) {
            res += "\n" + table.toString(vars);
        } else {
            res += ", #rel = " + table.size();
        }
        return res;
    }


    /**
     * Get a scripting compatible string representation.
     * @return script compatible representation for this Element.
     * @see edu.jas.structure.Element#toScript()
     */
    @Override
    public String toScript() {
        StringBuffer s = new StringBuffer();
        switch (Scripting.getLang()) {
        case Ruby:
            s.append("SolvPolyRing.new(");
            break;
        case Python:
        default:
            s.append("SolvPolyRing(");
        }
        if (coFac instanceof RingElem) {
            s.append(((RingElem) coFac).toScriptFactory());
        } else {
            s.append(coFac.toScript().trim());
        }
        s.append(",\"" + varsToString() + "\",");
        String to = tord.toString();
        if (tord.getEvord() == TermOrder.INVLEX) {
            to = "PolyRing.lex";
        }
        if (tord.getEvord() == TermOrder.IGRLEX) {
            to = "PolyRing.grad";
        }
        s.append(to);
        if (table.size() > 0) {
            String rel = table.toScript();
            s.append(",rel=");
            s.append(rel);
        }
        s.append(")");
        return s.toString();
    }


    /**
     * Comparison with any other object.
     * @see java.lang.Object#equals(java.lang.Object)
     */
    @Override
    @SuppressWarnings("unchecked")
    public boolean equals(Object other) {
        if (!(other instanceof GenSolvablePolynomialRing)) {
            return false;
        }
        // do a super.equals( )
        if (!super.equals(other)) {
            return false;
        }
        GenSolvablePolynomialRing oring = null;
        try {
            oring = (GenSolvablePolynomialRing) other;
        } catch (ClassCastException ignored) {
        }
        if (oring == null) {
            return false;
        }
        // @todo check same base relations
        //if ( ! table.equals(oring.table) ) {
        //    return false;
        //}
        return true;
    }


    /**
     * Hash code for this polynomial ring.
     * @see java.lang.Object#hashCode()
     */
    @Override
    public int hashCode() {
        int h;
        h = super.hashCode();
        h = 37 * h + table.hashCode();
        return h;
    }


    /**
     * Get the zero element.
     * @return 0 as GenSolvablePolynomial.
     */
    @Override
    public GenSolvablePolynomial getZERO() {
        return ZERO;
    }


    /**
     * Get the one element.
     * @return 1 as GenSolvablePolynomial.
     */
    @Override
    public GenSolvablePolynomial getONE() {
        return ONE;
    }


    /**
     * Query if this ring is commutative.
     * @return true if this ring is commutative, else false.
     */
    @Override
    public boolean isCommutative() {
        if (table.size() == 0) {
            return super.isCommutative();
        }
        // todo: check structure of relations
        return false;
    }


    /**
     * Query if this ring is associative. Test if the relations define an
     * associative solvable ring.
     * @return true, if this ring is associative, else false.
     */
    @Override
    public boolean isAssociative() {
        GenSolvablePolynomial Xi;
        GenSolvablePolynomial Xj;
        GenSolvablePolynomial Xk;
        GenSolvablePolynomial p;
        GenSolvablePolynomial q;
        for (int i = 0; i < nvar; i++) {
            Xi = univariate(i);
            for (int j = i + 1; j < nvar; j++) {
                Xj = univariate(j);
                for (int k = j + 1; k < nvar; k++) {
                    Xk = univariate(k);
                    p = Xk.multiply(Xj).multiply(Xi);
                    q = Xk.multiply(Xj.multiply(Xi));
                    if (!p.equals(q)) {
                        if (debug) {
                            logger.info("Xi = " + Xi + ", Xj = " + Xj + ", Xk = " + Xk);
                            logger.info("p = ( Xk * Xj ) * Xi = " + p);
                            logger.info("q = Xk * ( Xj * Xi ) = " + q);
                        }
                        return false;
                    }
                }
            }
        }
        return true;
    }


    /**
     * Get a (constant) GenSolvablePolynomial<C> element from a long
     * value.
     * @param a long.
     * @return a GenSolvablePolynomial<C>.
     */
    @Override
    public GenSolvablePolynomial fromInteger(long a) {
        return new GenSolvablePolynomial(this, coFac.fromInteger(a), evzero);
    }


    /**
     * Get a (constant) GenSolvablePolynomial<C> element from a BigInteger
     * value.
     * @param a BigInteger.
     * @return a GenSolvablePolynomial<C>.
     */
    @Override
    public GenSolvablePolynomial fromInteger(BigInteger a) {
        return new GenSolvablePolynomial(this, coFac.fromInteger(a), evzero);
    }


    /**
     * Random solvable polynomial. Generates a random solvable polynomial with k
     * = 5, l = n, d = (nvar == 1) ? n : 3, q = (nvar == 1) ? 0.7 : 0.3.
     * @param n number of terms.
     * @return a random solvable polynomial.
     */
    @Override
    public GenSolvablePolynomial random(int n) {
        return random(n, random);
    }


    /**
     * Random solvable polynomial. Generates a random solvable polynomial with k
     * = 5, l = n, d = (nvar == 1) ? n : 3, q = (nvar == 1) ? 0.7 : 0.3.
     * @param n number of terms.
     * @param rnd is a source for random bits.
     * @return a random solvable polynomial.
     */
    @Override
    public GenSolvablePolynomial random(int n, Random rnd) {
        if (nvar == 1) {
            return random(5, n, n, 0.7f, rnd);
        }
        return random(5, n, 3, 0.3f, rnd);
    }


    /**
     * Generate a random solvable polynomial.
     * @param k bitsize of random coefficients.
     * @param l number of terms.
     * @param d maximal degree in each variable.
     * @param q density of nozero exponents.
     * @return a random solvable polynomial.
     */
    @Override
    public GenSolvablePolynomial random(int k, int l, int d, float q) {
        return random(k, l, d, q, random);
    }


    /**
     * Random solvable polynomial.
     * @param k size of random coefficients.
     * @param l number of terms.
     * @param d maximal degree in each variable.
     * @param q density of nozero exponents.
     * @param rnd is a source for random bits.
     * @return a random solvable polynomial.
     */
    @Override
    public GenSolvablePolynomial random(int k, int l, int d, float q, Random rnd) {
        GenSolvablePolynomial r = getZERO(); //.clone();
        // copy( ZERO ); 
        // new GenPolynomial( this, getZERO().val );
        ExpVector e;
        C a;
        // add random coeffs and exponents
        for (int i = 0; i < l; i++) {
            e = ExpVector.EVRAND(nvar, d, q, rnd);
            a = coFac.random(k, rnd);
            r = (GenSolvablePolynomial) r.sum(a, e);
            // somewhat inefficient but clean
        }
        return r;
    }


    /**
     * Copy polynomial c.
     * @param c
     * @return a copy of c.
     */
    public GenSolvablePolynomial copy(GenSolvablePolynomial c) {
        return new GenSolvablePolynomial(this, c.val);
    }


    /**
     * Parse a solvable polynomial with the use of GenPolynomialTokenizer
     * @param s String.
     * @return GenSolvablePolynomial from s.
     */
    @Override
    public GenSolvablePolynomial parse(String s) {
        //return getZERO();
        return parse(new StringReader(s));
    }


    /**
     * Parse a solvable polynomial with the use of GenPolynomialTokenizer
     * @param r Reader.
     * @return next GenSolvablePolynomial from r.
     */
    @Override
    @SuppressWarnings("unchecked")
    public GenSolvablePolynomial parse(Reader r) {
        GenPolynomialTokenizer pt = new GenPolynomialTokenizer(this, r);
        GenSolvablePolynomial p = null;
        try {
            p = (GenSolvablePolynomial) pt.nextSolvablePolynomial();
        } catch (IOException e) {
            logger.error(e.toString() + " parse " + this);
            p = ZERO;
        }
        return p;
    }


    /**
     * Generate univariate solvable polynomial in a given variable.
     * @param i the index of the variable.
     * @return X_i as solvable univariate polynomial.
     */
    @Override
    public GenSolvablePolynomial univariate(int i) {
        return (GenSolvablePolynomial) super.univariate(i);
    }


    /**
     * Generate univariate solvable polynomial in a given variable with given
     * exponent.
     * @param i the index of the variable.
     * @param e the exponent of the variable.
     * @return X_i^e as solvable univariate polynomial.
     */
    @Override
    public GenSolvablePolynomial univariate(int i, long e) {
        return (GenSolvablePolynomial) super.univariate(i, e);
    }


    /**
     * Generate univariate solvable polynomial in a given variable with given
     * exponent.
     * @param modv number of module variables.
     * @param i the index of the variable.
     * @param e the exponent of the variable.
     * @return X_i^e as solvable univariate polynomial.
     */
    @Override
    public GenSolvablePolynomial univariate(int modv, int i, long e) {
        return (GenSolvablePolynomial) super.univariate(modv, i, e);
    }


    /**
     * Generate list of univariate polynomials in all variables.
     * @return List(X_1,...,X_n) a list of univariate polynomials.
     */
    @Override
    public List> univariateList() {
        //return castToSolvableList( super.univariateList() );
        return univariateList(0, 1L);
    }


    /**
     * Generate list of univariate polynomials in all variables.
     * @param modv number of module variables.
     * @return List(X_1,...,X_n) a list of univariate polynomials.
     */
    @Override
    public List> univariateList(int modv) {
        return univariateList(modv, 1L);
    }


    /**
     * Generate list of univariate polynomials in all variables with given
     * exponent.
     * @param modv number of module variables.
     * @param e the exponent of the variables.
     * @return List(X_1^e,...,X_n^e) a list of univariate polynomials.
     */
    @Override
    public List> univariateList(int modv, long e) {
        List> pols = new ArrayList>(nvar);
        int nm = nvar - modv;
        for (int i = 0; i < nm; i++) {
            GenSolvablePolynomial p = univariate(modv, nm - 1 - i, e);
            pols.add(p);
        }
        return pols;
    }


    /*
     * Generate list of univariate polynomials in all variables with given exponent.
     * @param modv number of module variables.
     * @param e the exponent of the variables.
     * @return List(X_1^e,...,X_n^e) a list of univariate polynomials.
     @Override
     public List> univariateList(int modv, long e) {
     List> pol = super.univariateList(modv,e);
     UnaryFunctor,GenSolvablePolynomial> fc 
     = new UnaryFunctor,GenSolvablePolynomial>() {
     public GenSolvablePolynomial eval(GenPolynomial p) {
     if ( ! (p instanceof GenSolvablePolynomial) ) {
     throw new RuntimeException("no solvable polynomial "+p);
     }
     return (GenSolvablePolynomial) p;
     }
     };
     List> pols 
     = ListUtil.,GenSolvablePolynomial>map(this,pol,fc);
     return pols;
     }
    */


    /* include here ?
     * Get list as List of GenSolvablePolynomials.
     * Required because no List casts allowed. Equivalent to 
     * cast (List<GenSolvablePolynomial<C>>) list.
     * @return solvable polynomial list from this.
     public List> castToSolvableList(List> list) {
     List< GenSolvablePolynomial > slist = null;
     if ( list == null ) {
     return slist;
     }
     slist = new ArrayList< GenSolvablePolynomial >( list.size() ); 
     GenSolvablePolynomial s;
     for ( GenPolynomial p: list ) {
     if ( ! (p instanceof GenSolvablePolynomial) ) {
     throw new RuntimeException("no solvable polynomial "+p);
     }
     s = (GenSolvablePolynomial) p;
     slist.add( s );
     }
     return slist;
     }
    */


    /**
     * Extend variables. Used e.g. in module embedding. Extend number of
     * variables by i.
     * @param i number of variables to extend.
     * @return extended solvable polynomial ring factory.
     */
    @Override
    public GenSolvablePolynomialRing extend(int i) {
        GenPolynomialRing pfac = super.extend(i);
        GenSolvablePolynomialRing spfac = new GenSolvablePolynomialRing(pfac.coFac, pfac.nvar,
                        pfac.tord, pfac.vars);
        spfac.table.extend(this.table);
        return spfac;
    }


    /**
     * Contract variables. Used e.g. in module embedding. Contract number of
     * variables by i.
     * @param i number of variables to remove.
     * @return contracted solvable polynomial ring factory.
     */
    @Override
    public GenSolvablePolynomialRing contract(int i) {
        GenPolynomialRing pfac = super.contract(i);
        GenSolvablePolynomialRing spfac = new GenSolvablePolynomialRing(pfac.coFac, pfac.nvar,
                        pfac.tord, pfac.vars);
        spfac.table.contract(this.table);
        return spfac;
    }


    /**
     * Reverse variables. Used e.g. in opposite rings.
     * @return solvable polynomial ring factory with reversed variables.
     */
    @Override
    public GenSolvablePolynomialRing reverse() {
        return reverse(false);
    }


    /**
     * Reverse variables. Used e.g. in opposite rings.
     * @param partial true for partialy reversed term orders.
     * @return solvable polynomial ring factory with reversed variables.
     */
    @Override
    public GenSolvablePolynomialRing reverse(boolean partial) {
        GenPolynomialRing pfac = super.reverse(partial);
        GenSolvablePolynomialRing spfac = new GenSolvablePolynomialRing(pfac.coFac, pfac.nvar,
                        pfac.tord, pfac.vars);
        spfac.partial = partial;
        spfac.table.reverse(this.table);
        return spfac;
    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy