All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.appdapter.gui.table.DefaultTableModel2 Maven / Gradle / Ivy

Go to download

Appdapter Maven project including Java and Scala, produces jar, not bundle. Excludes concrete SLF4J binding.

The newest version!
package org.appdapter.gui.table;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;

import javax.swing.event.TableModelEvent;
import javax.swing.table.DefaultTableModel;
import javax.swing.table.TableModel;

public class DefaultTableModel2 extends DefaultTableModel implements TableModel, Serializable {

	//
	// Instance Variables
	//

	/**
	 * The Vector of Vectors of 
	 * Object values.
	 */
	//protected Vector dataVector;

	/** The Vector of column identifiers. */
	//protected Vector columnIdentifiers;

	//
	// Constructors
	//

	/**
	 *  Constructs a default DefaultTableModel 
	 *  which is a table of zero columns and zero rows.
	 */
	public DefaultTableModel2() {
		this(0, 0);
	}

	private static Vector newVector(int size) {
		Vector v = new Vector(size);
		v.setSize(size);
		return v;
	}

	/**
	 *  Constructs a DefaultTableModel with
	 *  rowCount and columnCount of
	 *  null object values.
	 *
	 * @param rowCount           the number of rows the table holds
	 * @param columnCount        the number of columns the table holds
	 *
	 * @see #setValueAt
	 */
	public DefaultTableModel2(int rowCount, int columnCount) {
		this(newVector(columnCount), rowCount);
	}

	/**
	 *  Constructs a DefaultTableModel with as many columns
	 *  as there are elements in columnNames
	 *  and rowCount of null
	 *  object values.  Each column's name will be taken from
	 *  the columnNames vector.
	 *
	 * @param columnNames       vector containing the names
	 *				of the new columns; if this is 
	 *                          null then the model has no columns
	 * @param rowCount           the number of rows the table holds
	 * @see #setDataVector
	 * @see #setValueAt
	 */
	public DefaultTableModel2(Vector columnNames, int rowCount) {
		setDataVector(newVector(rowCount), columnNames);
	}

	/**
	 *  Constructs a DefaultTableModel with as many
	 *  columns as there are elements in columnNames
	 *  and rowCount of null
	 *  object values.  Each column's name will be taken from
	 *  the columnNames array.
	 *
	 * @param columnNames       array containing the names
	 *				of the new columns; if this is
	 *                          null then the model has no columns
	 * @param rowCount           the number of rows the table holds
	 * @see #setDataVector
	 * @see #setValueAt
	 */
	public DefaultTableModel2(Object[] columnNames, int rowCount) {
		this(convertToVector(columnNames), rowCount);
	}

	/**
	 *  Constructs a DefaultTableModel and initializes the table
	 *  by passing data and columnNames
	 *  to the setDataVector method.
	 *
	 * @param data              the data of the table, a Vector
	 *                          of Vectors of Object
	 *                          values
	 * @param columnNames       vector containing the names
	 *				of the new columns
	 * @see #getDataVector
	 * @see #setDataVector
	 */
	public DefaultTableModel2(Vector data, Vector columnNames) {
		setDataVector(data, columnNames);
	}

	/**
	 *  Constructs a DefaultTableModel and initializes the table
	 *  by passing data and columnNames
	 *  to the setDataVector
	 *  method. The first index in the Object[][] array is
	 *  the row index and the second is the column index.
	 *
	 * @param data              the data of the table
	 * @param columnNames       the names of the columns
	 * @see #getDataVector
	 * @see #setDataVector
	 */
	public DefaultTableModel2(Object[][] data, Object[] columnNames) {
		setDataVector(data, columnNames);
	}

	/**
	 *  Returns the Vector of Vectors
	 *  that contains the table's
	 *  data values.  The vectors contained in the outer vector are
	 *  each a single row of values.  In other words, to get to the cell
	 *  at row 1, column 5: 

* * ((Vector)getDataVector().elementAt(1)).elementAt(5);

* * @return the vector of vectors containing the tables data values * * @see #newDataAvailable * @see #newRowsAdded * @see #setDataVector */ public Vector getDataVector() { return (Vector) dataVector; } private static Vector nonNullVector(Vector v) { return (v != null) ? v : new Vector(); } /** * Replaces the current dataVector instance variable * with the new Vector of rows, dataVector. * Each row is represented in dataVector as a * Vector of Object values. * columnIdentifiers are the names of the new * columns. The first name in columnIdentifiers is * mapped to column 0 in dataVector. Each row in * dataVector is adjusted to match the number of * columns in columnIdentifiers * either by truncating the Vector if it is too long, * or adding null values if it is too short. *

Note that passing in a null value for * dataVector results in unspecified behavior, * an possibly an exception. * * @param dataVector the new data vector * @param columnIdentifiers the names of the columns * @see #getDataVector */ public void setDataVector(Vector dataVector, Vector columnIdentifiers) { this.dataVector = nonNullVector(dataVector); this.columnIdentifiers = nonNullVector(columnIdentifiers); justifyRows(0, getRowCount()); fireTableStructureChanged(); } /** * Replaces the value in the dataVector instance * variable with the values in the array dataVector. * The first index in the Object[][] * array is the row index and the second is the column index. * columnIdentifiers are the names of the new columns. * * @param dataVector the new data vector * @param columnIdentifiers the names of the columns * @see #setDataVector(Vector, Vector) */ public void setDataVector(Object[][] dataVector, Object[] columnIdentifiers) { setDataVector(convertToVector(dataVector), convertToVector(columnIdentifiers)); } /** * Equivalent to fireTableChanged. * * @param event the change event * */ public void newDataAvailable(TableModelEvent event) { fireTableChanged(event); } // // Manipulating rows // private void justifyRows(int from, int to) { // Sometimes the DefaultTableModel is subclassed // instead of the AbstractTableModel by mistake. // Set the number of rows for the case when getRowCount // is overridden. dataVector.setSize(getRowCount()); for (int i = from; i < to; i++) { if (dataVector.elementAt(i) == null) { dataVector.setElementAt(new Vector(), i); } ((Vector) dataVector.elementAt(i)).setSize(getColumnCount()); } } /** * Ensures that the new rows have the correct number of columns. * This is accomplished by using the setSize method in * Vector which truncates vectors * which are too long, and appends nulls if they * are too short. * This method also sends out a tableChanged * notification message to all the listeners. * * @param e this TableModelEvent describes * where the rows were added. * If null it assumes * all the rows were newly added * @see #getDataVector */ public void newRowsAdded(TableModelEvent e) { justifyRows(e.getFirstRow(), e.getLastRow() + 1); fireTableChanged(e); } /** * Equivalent to fireTableChanged. * * @param event the change event * */ public void rowsRemoved(TableModelEvent event) { fireTableChanged(event); } /** * Obsolete as of Java 2 platform v1.3. Please use setRowCount instead. */ /* * Sets the number of rows in the model. If the new size is greater * than the current size, new rows are added to the end of the model * If the new size is less than the current size, all * rows at index rowCount and greater are discarded.

* * @param rowCount the new number of rows * @see #setRowCount */ public void setNumRows(int rowCount) { int old = getRowCount(); if (old == rowCount) { return; } dataVector.setSize(rowCount); if (rowCount <= old) { fireTableRowsDeleted(rowCount, old - 1); } else { justifyRows(old, rowCount); fireTableRowsInserted(old, rowCount - 1); } } /** * Sets the number of rows in the model. If the new size is greater * than the current size, new rows are added to the end of the model * If the new size is less than the current size, all * rows at index rowCount and greater are discarded.

* * @see #setColumnCount * @since 1.3 */ public void setRowCount(int rowCount) { setNumRows(rowCount); } /** * Adds a row to the end of the model. The new row will contain * null values unless rowData is specified. * Notification of the row being added will be generated. * * @param rowData optional data of the row being added */ public void addRow(Vector rowData) { insertRow(getRowCount(), rowData); } /** * Adds a row to the end of the model. The new row will contain * null values unless rowData is specified. * Notification of the row being added will be generated. * * @param rowData optional data of the row being added */ public void addRow(Object[] rowData) { addRow(convertToVector(rowData)); } /** * Inserts a row at row in the model. The new row * will contain null values unless rowData * is specified. Notification of the row being added will be generated. * * @param row the row index of the row to be inserted * @param rowData optional data of the row being added * @exception ArrayIndexOutOfBoundsException if the row was invalid */ public void insertRow(int row, Vector rowData) { dataVector.insertElementAt(rowData, row); justifyRows(row, row + 1); fireTableRowsInserted(row, row); } /** * Inserts a row at row in the model. The new row * will contain null values unless rowData * is specified. Notification of the row being added will be generated. * * @param row the row index of the row to be inserted * @param rowData optional data of the row being added * @exception ArrayIndexOutOfBoundsException if the row was invalid */ public void insertRow(int row, Object[] rowData) { insertRow(row, convertToVector(rowData)); } private static int gcd(int i, int j) { return (j == 0) ? i : gcd(j, i % j); } private static void rotate(Vector v, int a, int b, int shift) { int size = b - a; int r = size - shift; int g = gcd(size, r); for (int i = 0; i < g; i++) { int to = i; Object tmp = v.elementAt(a + to); for (int from = (to + r) % size; from != i; from = (to + r) % size) { v.setElementAt(v.elementAt(a + from), a + to); to = from; } v.setElementAt(tmp, a + to); } } /** * Moves one or more rows from the inclusive range start to * end to the to position in the model. * After the move, the row that was at index start * will be at index to. * This method will send a tableChanged notification * message to all the listeners.

* *

	 *  Examples of moves:
	 *  

* 1. moveRow(1,3,5); * a|B|C|D|e|f|g|h|i|j|k - before * a|e|f|g|h|B|C|D|i|j|k - after *

* 2. moveRow(6,7,1); * a|b|c|d|e|f|G|H|i|j|k - before * a|G|H|b|c|d|e|f|i|j|k - after *

*

* * @param start the starting row index to be moved * @param end the ending row index to be moved * @param to the destination of the rows to be moved * @exception ArrayIndexOutOfBoundsException if any of the elements * would be moved out of the table's range * */ public void moveRow(int start, int end, int to) { int shift = to - start; int first, last; if (shift < 0) { first = to; last = end; } else { first = start; last = to + end - start; } rotate(getDataVector(), first, last + 1, shift); fireTableRowsUpdated(first, last); } /** * Removes the row at row from the model. Notification * of the row being removed will be sent to all the listeners. * * @param row the row index of the row to be removed * @exception ArrayIndexOutOfBoundsException if the row was invalid */ public void removeRow(int row) { dataVector.removeElementAt(row); fireTableRowsDeleted(row, row); } // // Manipulating columns // /** * Replaces the column identifiers in the model. If the number of * newIdentifiers is greater than the current number * of columns, new columns are added to the end of each row in the model. * If the number of newIdentifiers is less than the current * number of columns, all the extra columns at the end of a row are * discarded.

* * @param columnIdentifiers vector of column identifiers. If * null, set the model * to zero columns * @see #setNumRows */ public void setColumnIdentifiers(Vector columnIdentifiers) { setDataVector(dataVector, columnIdentifiers); } /** * Replaces the column identifiers in the model. If the number of * newIdentifiers is greater than the current number * of columns, new columns are added to the end of each row in the model. * If the number of newIdentifiers is less than the current * number of columns, all the extra columns at the end of a row are * discarded.

* * @param newIdentifiers array of column identifiers. * If null, set * the model to zero columns * @see #setNumRows */ public void setColumnIdentifiers(Object[] newIdentifiers) { setColumnIdentifiers(convertToVector(newIdentifiers)); } /** * Sets the number of columns in the model. If the new size is greater * than the current size, new columns are added to the end of the model * with null cell values. * If the new size is less than the current size, all columns at index * columnCount and greater are discarded. * * @param columnCount the new number of columns in the model * * @see #setColumnCount * @since 1.3 */ public void setColumnCount(int columnCount) { columnIdentifiers.setSize(columnCount); justifyRows(0, getRowCount()); fireTableStructureChanged(); } /** * Adds a column to the model. The new column will have the * identifier columnName, which may be null. This method * will send a * tableChanged notification message to all the listeners. * This method is a cover for addColumn(Object, Vector) which * uses null as the data vector. * * @param columnName the identifier of the column being added */ public void addColumn(Object columnName) { addColumn(columnName, (Vector) null); } /** * Adds a column to the model. The new column will have the * identifier columnName, which may be null. * columnData is the * optional vector of data for the column. If it is null * the column is filled with null values. Otherwise, * the new data will be added to model starting with the first * element going to row 0, etc. This method will send a * tableChanged notification message to all the listeners. * * @param columnName the identifier of the column being added * @param columnData optional data of the column being added */ public void addColumn(Object columnName, Vector columnData) { columnIdentifiers.addElement(columnName); if (columnData != null) { int columnSize = columnData.size(); if (columnSize > getRowCount()) { dataVector.setSize(columnSize); } justifyRows(0, getRowCount()); int newColumn = getColumnCount() - 1; for (int i = 0; i < columnSize; i++) { Vector row = (Vector) dataVector.elementAt(i); row.setElementAt(columnData.elementAt(i), newColumn); } } else { justifyRows(0, getRowCount()); } fireTableStructureChanged(); } /** * Adds a column to the model. The new column will have the * identifier columnName. columnData is the * optional array of data for the column. If it is null * the column is filled with null values. Otherwise, * the new data will be added to model starting with the first * element going to row 0, etc. This method will send a * tableChanged notification message to all the listeners. * * @see #addColumn(Object, Vector) */ public void addColumn(Object columnName, Object[] columnData) { addColumn(columnName, convertToVector(columnData)); } // // Implementing the TableModel interface // /** * Returns the number of rows in this data table. * @return the number of rows in the model */ public int getRowCount() { return dataVector.size(); } /** * Returns the number of columns in this data table. * @return the number of columns in the model */ public int getColumnCount() { return columnIdentifiers.size(); } /** * Returns the column name. * * @return a name for this column using the string value of the * appropriate member in columnIdentifiers. * If columnIdentifiers does not have an entry * for this index, returns the default * name provided by the superclass. */ public String getColumnName(int column) { Object id = null; // This test is to cover the case when // getColumnCount has been subclassed by mistake ... if (column < columnIdentifiers.size() && (column >= 0)) { id = columnIdentifiers.elementAt(column); } return (id == null) ? super.getColumnName(column) : id.toString(); } /** * Returns true regardless of parameter values. * * @param row the row whose value is to be queried * @param column the column whose value is to be queried * @return true * @see #setValueAt */ public boolean isCellEditable(int row, int column) { return true; } /** * Returns an attribute value for the cell at row * and column. * * @param row the row whose value is to be queried * @param column the column whose value is to be queried * @return the value Object at the specified cell * @exception ArrayIndexOutOfBoundsException if an invalid row or * column was given */ public Object getValueAt(int row, int column) { Vector rowVector = (Vector) dataVector.elementAt(row); return rowVector.elementAt(column); } /** * Sets the object value for the cell at column and * row. aValue is the new value. This method * will generate a tableChanged notification. * * @param aValue the new value; this can be null * @param row the row whose value is to be changed * @param column the column whose value is to be changed * @exception ArrayIndexOutOfBoundsException if an invalid row or * column was given */ public void setValueAt(Object aValue, int row, int column) { Vector rowVector = (Vector) dataVector.elementAt(row); rowVector.setElementAt(aValue, column); fireTableCellUpdated(row, column); } // // Protected Methods // /** * Returns a vector that contains the same objects as the array. * @param anArray the array to be converted * @return the new vector; if anArray is null, * returns null */ protected static Vector convertToVector(Object[] anArray) { if (anArray == null) { return null; } Vector v = new Vector(anArray.length); for (int i = 0; i < anArray.length; i++) { v.addElement(anArray[i]); } return v; } /** * Returns a vector of vectors that contains the same objects as the array. * @param anArray the double array to be converted * @return the new vector of vectors; if anArray is * null, returns null */ protected static Vector convertToVector(Object[][] anArray) { if (anArray == null) { return null; } Vector v = new Vector(anArray.length); for (int i = 0; i < anArray.length; i++) { v.addElement(convertToVector(anArray[i])); } return v; } static class Vector extends java.util.Vector implements List { /** * The array buffer into which the components of the vector are * stored. The capacity of the vector is the length of this array buffer, * and is at least large enough to contain all the vector's elements. * *

Any array elements following the last element in the Vector are null. * * @serial */ protected List elementData; /** * The number of valid components in this {@code Vector} object. * Components {@code elementData[0]} through * {@code elementData[elementCount-1]} are the actual items. * * @serial */ //protected String elementCount; /** * The amount by which the capacity of the vector is automatically * incremented when its size becomes greater than its capacity. If * the capacity increment is less than or equal to zero, the capacity * of the vector is doubled each time it needs to grow. * * @serial */ //protected int capacityIncrement; /** use serialVersionUID from JDK 1.0.2 for interoperability */ //private static final long serialVersionUID = -2767605614048989439L; /** * Constructs an empty vector with the specified initial capacity and * capacity increment. * * @param initialCapacity the initial capacity of the vector * @param capacityIncrement the amount by which the capacity is * increased when the vector overflows * @throws IllegalArgumentException if the specified initial capacity * is negative */ public Vector(int initialCapacity, int capacityIncrement) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity); this.elementData = new ArrayList(initialCapacity); this.capacityIncrement = capacityIncrement; } /** * Constructs an empty vector with the specified initial capacity and * with its capacity increment equal to zero. * * @param initialCapacity the initial capacity of the vector * @throws IllegalArgumentException if the specified initial capacity * is negative */ public Vector(int initialCapacity) { this(initialCapacity, 0); } /** * Constructs an empty vector so that its internal data array * has size {@code 10} and its standard capacity increment is * zero. */ public Vector() { this(10); } /** * Constructs a vector containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. * * @param c the collection whose elements are to be placed into this * vector * @throws NullPointerException if the specified collection is null * @since 1.2 */ public Vector(Collection c) { elementData = new ArrayList(c); elementCount = size(); } public Vector(List c) { elementData = c; elementCount = size(); } /** * Copies the components of this vector into the specified array. * The item at index {@code k} in this vector is copied into * component {@code k} of {@code anArray}. * * @param anArray the array into which the components get copied * @throws NullPointerException if the given array is null * @throws IndexOutOfBoundsException if the specified array is not * large enough to hold all the components of this vector * @throws ArrayStoreException if a component of this vector is not of * a runtime type that can be stored in the specified array * @see #toArray(Object[]) */ public synchronized void copyInto(Object[] anArray) { elementCount = size(); System.arraycopy(elementData.toArray(), 0, anArray, 0, elementCount); } /** * Trims the capacity of this vector to be the vector's current * size. If the capacity of this vector is larger than its current * size, then the capacity is changed to equal the size by replacing * its internal data array, kept in the field {@code elementData}, * with a smaller one. An application can use this operation to * minimize the storage of a vector. */ public synchronized void trimToSize() { } /** * Increases the capacity of this vector, if necessary, to ensure * that it can hold at least the number of components specified by * the minimum capacity argument. * *

If the current capacity of this vector is less than * {@code minCapacity}, then its capacity is increased by replacing its * internal data array, kept in the field {@code elementData}, with a * larger one. The size of the new data array will be the old size plus * {@code capacityIncrement}, unless the value of * {@code capacityIncrement} is less than or equal to zero, in which case * the new capacity will be twice the old capacity; but if this new size * is still smaller than {@code minCapacity}, then the new capacity will * be {@code minCapacity}. * * @param minCapacity the desired minimum capacity */ public synchronized void ensureCapacity(int minCapacity) { modCount++; ensureCapacityHelper(minCapacity); } /** * This implements the unsynchronized semantics of ensureCapacity. * Synchronized methods in this class can internally call this * method for ensuring capacity without incurring the cost of an * extra synchronization. * * @see #ensureCapacity(int) */ private void ensureCapacityHelper(int minCapacity) { } /** * Sets the size of this vector. If the new size is greater than the * current size, new {@code null} items are added to the end of * the vector. If the new size is less than the current size, all * components at index {@code newSize} and greater are discarded. * * @param newSize the new size of this vector * @throws ArrayIndexOutOfBoundsException if the new size is negative */ public synchronized void setSize(int newSize) { modCount++; elementCount = size(); if (newSize > elementCount) { ensureCapacityHelper(newSize); } else { for (int i = newSize; i < elementCount; i++) { elementData.set(i, null); } } elementCount = newSize; } /** * Returns the current capacity of this vector. * * @return the current capacity (the length of its internal * data array, kept in the field {@code elementData} * of this vector) */ public synchronized int capacity() { return elementData.size(); } /** * Returns the number of components in this vector. * * @return the number of components in this vector */ public synchronized int size() { return elementData.size(); } /** * Tests if this vector has no components. * * @return {@code true} if and only if this vector has * no components, that is, its size is zero; * {@code false} otherwise. */ public synchronized boolean isEmpty() { return elementData.isEmpty(); } /** * Returns an enumeration of the components of this vector. The * returned {@code Enumeration} object will generate all items in * this vector. The first item generated is the item at index {@code 0}, * then the item at index {@code 1}, and so on. * * @return an enumeration of the components of this vector * @see Iterator */ public Enumeration elements() { synchronized (Vector.this) { return new Enumeration() { Object[] elementData = Vector.this.elementData.toArray(); int elementCount = elementData.length; int count = 0; public boolean hasMoreElements() { return count < elementCount; } public E nextElement() { synchronized (Vector.this) { if (count < elementCount) { return (E) elementData[count++]; } } throw new NoSuchElementException("Vector Enumeration"); } }; } } public Iterator iterator() { Iterator i = elementData.iterator(); return i; } @Override public ListIterator listIterator() { return elementData.listIterator(); } /** * Returns {@code true} if this vector contains the specified element. * More formally, returns {@code true} if and only if this vector * contains at least one element {@code e} such that * (o==null ? e==null : o.equals(e)). * * @param o element whose presence in this vector is to be tested * @return {@code true} if this vector contains the specified element */ public boolean contains(Object o) { return indexOf(o, 0) >= 0; } /** * Returns the index of the first occurrence of the specified element * in this vector, or -1 if this vector does not contain the element. * More formally, returns the lowest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. * * @param o element to search for * @return the index of the first occurrence of the specified element in * this vector, or -1 if this vector does not contain the element */ public int indexOf(Object o) { return indexOf(o, 0); } /** * Returns the index of the first occurrence of the specified element in * this vector, searching forwards from {@code index}, or returns -1 if * the element is not found. * More formally, returns the lowest index {@code i} such that * (i >= index && (o==null ? get(i)==null : o.equals(get(i)))), * or -1 if there is no such index. * * @param o element to search for * @param index index to start searching from * @return the index of the first occurrence of the element in * this vector at position {@code index} or later in the vector; * {@code -1} if the element is not found. * @throws IndexOutOfBoundsException if the specified index is negative * @see Object#equals(Object) */ public synchronized int indexOf(Object o, int index) { elementCount = size(); if (o == null) { for (int i = index; i < elementCount; i++) if (elementData.get(i) == null) return i; } else { for (int i = index; i < elementCount; i++) if (o.equals(elementData.get(i))) return i; } return -1; } /** * Returns the index of the last occurrence of the specified element * in this vector, or -1 if this vector does not contain the element. * More formally, returns the highest index {@code i} such that * (o==null ? get(i)==null : o.equals(get(i))), * or -1 if there is no such index. * * @param o element to search for * @return the index of the last occurrence of the specified element in * this vector, or -1 if this vector does not contain the element */ public synchronized int lastIndexOf(Object o) { elementCount = size(); return lastIndexOf(o, elementCount - 1); } /** * Returns the index of the last occurrence of the specified element in * this vector, searching backwards from {@code index}, or returns -1 if * the element is not found. * More formally, returns the highest index {@code i} such that * (i <= index && (o==null ? get(i)==null : o.equals(get(i)))), * or -1 if there is no such index. * * @param o element to search for * @param index index to start searching backwards from * @return the index of the last occurrence of the element at position * less than or equal to {@code index} in this vector; * -1 if the element is not found. * @throws IndexOutOfBoundsException if the specified index is greater * than or equal to the current size of this vector */ public synchronized int lastIndexOf(Object o, int index) { elementCount = size(); if (index >= elementCount) throw new IndexOutOfBoundsException(index + " >= " + elementCount); if (o == null) { for (int i = index; i >= 0; i--) if (elementData.get(i) == null) return i; } else { for (int i = index; i >= 0; i--) if (o.equals(elementData.get(i))) return i; } return -1; } /** * Returns the component at the specified index. * *

This method is identical in functionality to the {@link #get(int)} * method (which is part of the {@link List} interface). * * @param index an index into this vector * @return the component at the specified index * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized E elementAt(int index) { elementCount = size(); if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } return (E) elementData.get(index); } /** * Returns the first component (the item at index {@code 0}) of * this vector. * * @return the first component of this vector * @throws NoSuchElementException if this vector has no components */ public synchronized E firstElement() { elementCount = size(); if (elementCount == 0) { throw new NoSuchElementException(); } return (E) elementData.get(0); } /** * Returns the last component of the vector. * * @return the last component of the vector, i.e., the component at index * size() - 1. * @throws NoSuchElementException if this vector is empty */ public synchronized E lastElement() { elementCount = size(); if (elementCount == 0) { throw new NoSuchElementException(); } return (E) elementData.get(elementCount - 1); } /** * Sets the component at the specified {@code index} of this * vector to be the specified object. The previous component at that * position is discarded. * *

The index must be a value greater than or equal to {@code 0} * and less than the current size of the vector. * *

This method is identical in functionality to the * {@link #set(int, Object) set(int, E)} * method (which is part of the {@link List} interface). Note that the * {@code set} method reverses the order of the parameters, to more closely * match array usage. Note also that the {@code set} method returns the * old value that was stored at the specified position. * * @param obj what the component is to be set to * @param index the specified index * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized void setElementAt(E obj, int index) { elementCount = size(); if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } elementData.set(index, (E) obj); } /** * Deletes the component at the specified index. Each component in * this vector with an index greater or equal to the specified * {@code index} is shifted downward to have an index one * smaller than the value it had previously. The size of this vector * is decreased by {@code 1}. * *

The index must be a value greater than or equal to {@code 0} * and less than the current size of the vector. * *

This method is identical in functionality to the {@link #remove(int)} * method (which is part of the {@link List} interface). Note that the * {@code remove} method returns the old value that was stored at the * specified position. * * @param index the index of the object to remove * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) */ public synchronized void removeElementAt(int index) { modCount++; elementData.remove(index); } /** * Inserts the specified object as a component in this vector at the * specified {@code index}. Each component in this vector with * an index greater or equal to the specified {@code index} is * shifted upward to have an index one greater than the value it had * previously. * *

The index must be a value greater than or equal to {@code 0} * and less than or equal to the current size of the vector. (If the * index is equal to the current size of the vector, the new element * is appended to the Vector.) * *

This method is identical in functionality to the * {@link #add(int, Object) add(int, E)} * method (which is part of the {@link List} interface). Note that the * {@code add} method reverses the order of the parameters, to more closely * match array usage. * * @param obj the component to insert * @param index where to insert the new component * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index > size()}) */ public synchronized void insertElementAt(E obj, int index) { modCount++; elementData.add(index, obj); } /** * Adds the specified component to the end of this vector, * increasing its size by one. The capacity of this vector is * increased if its size becomes greater than its capacity. * *

This method is identical in functionality to the * {@link #add(Object) add(E)} * method (which is part of the {@link List} interface). * * @param obj the component to be added */ public synchronized void addElement(E obj) { modCount++; elementData.add(obj); } /** * Removes the first (lowest-indexed) occurrence of the argument * from this vector. If the object is found in this vector, each * component in the vector with an index greater or equal to the * object's index is shifted downward to have an index one smaller * than the value it had previously. * *

This method is identical in functionality to the * {@link #remove(Object)} method (which is part of the * {@link List} interface). * * @param obj the component to be removed * @return {@code true} if the argument was a component of this * vector; {@code false} otherwise. */ public synchronized boolean removeElement(Object obj) { modCount++; int i = indexOf(obj); if (i >= 0) { removeElementAt(i); return true; } return false; } /** * Removes all components from this vector and sets its size to zero. * *

This method is identical in functionality to the {@link #clear} * method (which is part of the {@link List} interface). */ public synchronized void removeAllElements() { modCount++; elementData.clear(); } /** * Returns a clone of this vector. The copy will contain a * reference to a clone of the internal data array, not a reference * to the original internal data array of this {@code Vector} object. * * @return a clone of this vector */ public synchronized Object clone() { try { Vector v = (Vector) super.clone(); v.elementData = elementData.getClass().getConstructor(Collection.class).newInstance(elementData); v.modCount = 0; return v; } catch (Exception e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } } /** * Returns an array containing all of the elements in this Vector * in the correct order. * * @since 1.2 */ public synchronized Object[] toArray() { return elementData.toArray(); } /** * Returns an array containing all of the elements in this Vector in the * correct order; the runtime type of the returned array is that of the * specified array. If the Vector fits in the specified array, it is * returned therein. Otherwise, a new array is allocated with the runtime * type of the specified array and the size of this Vector. * *

If the Vector fits in the specified array with room to spare * (i.e., the array has more elements than the Vector), * the element in the array immediately following the end of the * Vector is set to null. (This is useful in determining the length * of the Vector only if the caller knows that the Vector * does not contain any null elements.) * * @param a the array into which the elements of the Vector are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the Vector * @throws ArrayStoreException if the runtime type of a is not a supertype * of the runtime type of every element in this Vector * @throws NullPointerException if the given array is null * @since 1.2 */ public synchronized T[] toArray(T[] a) { return elementData.toArray(a); } // Positional Access Operations /** * Returns the element at the specified position in this Vector. * * @param index index of the element to return * @return object at the specified index * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) * @since 1.2 */ public synchronized E get(int index) { return elementData.get(index); } /** * Replaces the element at the specified position in this Vector with the * specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) * @since 1.2 */ public synchronized E set(int index, E element) { modCount++; return elementData.set(index, element); } /** * Appends the specified element to the end of this Vector. * * @param e element to be appended to this Vector * @return {@code true} (as specified by {@link Collection#add}) * @since 1.2 */ public synchronized boolean add(E e) { modCount++; return elementData.add(e); } /** * Removes the first occurrence of the specified element in this Vector * If the Vector does not contain the element, it is unchanged. More * formally, removes the element with the lowest index i such that * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such * an element exists). * * @param o element to be removed from this Vector, if present * @return true if the Vector contained the specified element * @since 1.2 */ public boolean remove(Object o) { return removeElement(o); } /** * Inserts the specified element at the specified position in this Vector. * Shifts the element currently at that position (if any) and any * subsequent elements to the right (adds one to their indices). * * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index > size()}) * @since 1.2 */ public void add(int index, E element) { insertElementAt(element, index); } /** * Removes the element at the specified position in this Vector. * Shifts any subsequent elements to the left (subtracts one from their * indices). Returns the element that was removed from the Vector. * * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index >= size()}) * @param index the index of the element to be removed * @return element that was removed * @since 1.2 */ public synchronized E remove(int index) { modCount++; return elementData.remove(index); } /** * Removes all of the elements from this Vector. The Vector will * be empty after this call returns (unless it throws an exception). * * @since 1.2 */ public void clear() { removeAllElements(); } // Bulk Operations /** * Returns true if this Vector contains all of the elements in the * specified Collection. * * @param c a collection whose elements will be tested for containment * in this Vector * @return true if this Vector contains all of the elements in the * specified collection * @throws NullPointerException if the specified collection is null */ public synchronized boolean containsAll(Collection c) { return super.containsAll(c); } /** * Appends all of the elements in the specified Collection to the end of * this Vector, in the order that they are returned by the specified * Collection's Iterator. The behavior of this operation is undefined if * the specified Collection is modified while the operation is in progress. * (This implies that the behavior of this call is undefined if the * specified Collection is this Vector, and this Vector is nonempty.) * * @param c elements to be inserted into this Vector * @return {@code true} if this Vector changed as a result of the call * @throws NullPointerException if the specified collection is null * @since 1.2 */ public synchronized boolean addAll(Collection c) { modCount++; return elementData.addAll(c); } /** * Removes from this Vector all of its elements that are contained in the * specified Collection. * * @param c a collection of elements to be removed from the Vector * @return true if this Vector changed as a result of the call * @throws ClassCastException if the types of one or more elements * in this vector are incompatible with the specified * collection (optional) * @throws NullPointerException if this vector contains one or more null * elements and the specified collection does not support null * elements (optional), or if the specified collection is null * @since 1.2 */ public synchronized boolean removeAll(Collection c) { modCount++; return elementData.removeAll(c); } /** * Retains only the elements in this Vector that are contained in the * specified Collection. In other words, removes from this Vector all * of its elements that are not contained in the specified Collection. * * @param c a collection of elements to be retained in this Vector * (all other elements are removed) * @return true if this Vector changed as a result of the call * @throws ClassCastException if the types of one or more elements * in this vector are incompatible with the specified * collection (optional) * @throws NullPointerException if this vector contains one or more null * elements and the specified collection does not support null * elements (optional), or if the specified collection is null * @since 1.2 */ public synchronized boolean retainAll(Collection c) { modCount++; return elementData.retainAll(c); } /** * Inserts all of the elements in the specified Collection into this * Vector at the specified position. Shifts the element currently at * that position (if any) and any subsequent elements to the right * (increases their indices). The new elements will appear in the Vector * in the order that they are returned by the specified Collection's * iterator. * * @param index index at which to insert the first element from the * specified collection * @param c elements to be inserted into this Vector * @return {@code true} if this Vector changed as a result of the call * @throws ArrayIndexOutOfBoundsException if the index is out of range * ({@code index < 0 || index > size()}) * @throws NullPointerException if the specified collection is null * @since 1.2 */ public synchronized boolean addAll(int index, Collection c) { modCount++; return elementData.addAll(index, c); } /** * Compares the specified Object with this Vector for equality. Returns * true if and only if the specified Object is also a List, both Lists * have the same size, and all corresponding pairs of elements in the two * Lists are equal. (Two elements {@code e1} and * {@code e2} are equal if {@code (e1==null ? e2==null : * e1.equals(e2))}.) In other words, two Lists are defined to be * equal if they contain the same elements in the same order. * * @param o the Object to be compared for equality with this Vector * @return true if the specified Object is equal to this Vector */ public synchronized boolean equals(Object o) { return super.equals(o); } /** * Returns the hash code value for this Vector. */ public synchronized int hashCode() { return elementData.hashCode(); } /** * Returns a string representation of this Vector, containing * the String representation of each element. */ public synchronized String toString() { return super.toString(); } /** * Returns a view of the portion of this List between fromIndex, * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are * equal, the returned List is empty.) The returned List is backed by this * List, so changes in the returned List are reflected in this List, and * vice-versa. The returned List supports all of the optional List * operations supported by this List. * *

This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays). Any operation that expects * a List can be used as a range operation by operating on a subList view * instead of a whole List. For example, the following idiom * removes a range of elements from a List: *

		 *	    list.subList(from, to).clear();
		 * 
* Similar idioms may be constructed for indexOf and lastIndexOf, * and all of the algorithms in the Collections class can be applied to * a subList. * *

The semantics of the List returned by this method become undefined if * the backing list (i.e., this List) is structurally modified in * any way other than via the returned List. (Structural modifications are * those that change the size of the List, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @param fromIndex low endpoint (inclusive) of the subList * @param toIndex high endpoint (exclusive) of the subList * @return a view of the specified range within this List * @throws IndexOutOfBoundsException if an endpoint index value is out of range * {@code (fromIndex < 0 || toIndex > size)} * @throws IllegalArgumentException if the endpoint indices are out of order * {@code (fromIndex > toIndex)} */ public synchronized List subList(int fromIndex, int toIndex) { return super.subList(fromIndex, toIndex); } /** * Removes from this List all of the elements whose index is between * fromIndex, inclusive and toIndex, exclusive. Shifts any succeeding * elements to the left (reduces their index). * This call shortens the ArrayList by (toIndex - fromIndex) elements. (If * toIndex==fromIndex, this operation has no effect.) * * @param fromIndex index of first element to be removed * @param toIndex index after last element to be removed */ protected synchronized void removeRange(int fromIndex, int toIndex) { modCount++; int index = fromIndex; elementCount = size(); if (index >= elementCount) { index = elementCount - 1; } while (index > fromIndex) { elementData.remove(index); index--; } } /** * Save the state of the {@code Vector} instance to a stream (that * is, serialize it). This method is present merely for synchronization. * It just calls the default writeObject method. */ private synchronized void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); } @Override public ListIterator listIterator(int index) { return elementData.listIterator(index); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy