org.asynchttpclient.ntlm.NtlmEngine Maven / Gradle / Ivy
/*
* ====================================================================
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* .
*
*/
// fork from Apache HttpComponents
package org.asynchttpclient.ntlm;
import static java.nio.charset.StandardCharsets.US_ASCII;
import java.io.UnsupportedEncodingException;
import java.nio.charset.Charset;
import java.nio.charset.UnsupportedCharsetException;
import java.security.Key;
import java.security.MessageDigest;
import java.util.Arrays;
import java.util.Locale;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
import org.asynchttpclient.util.Base64;
/**
* Provides an implementation for NTLMv1, NTLMv2, and NTLM2 Session forms of the NTLM
* authentication protocol.
*
* @since 4.1
*/
@SuppressWarnings("unused")
public final class NtlmEngine {
public static final NtlmEngine INSTANCE = new NtlmEngine();
/** Unicode encoding */
private static final Charset UNICODE_LITTLE_UNMARKED;
static {
Charset c;
try {
c = Charset.forName("UnicodeLittleUnmarked");
} catch (UnsupportedCharsetException e) {
c = null;
}
UNICODE_LITTLE_UNMARKED = c;
}
private static final byte[] MAGIC_CONSTANT = "KGS!@#$%".getBytes(US_ASCII);
// Flags we use; descriptions according to:
// http://davenport.sourceforge.net/ntlm.html
// and
// http://msdn.microsoft.com/en-us/library/cc236650%28v=prot.20%29.aspx
private static final int FLAG_REQUEST_UNICODE_ENCODING = 0x00000001; // Unicode string encoding requested
private static final int FLAG_REQUEST_TARGET = 0x00000004; // Requests target field
private static final int FLAG_REQUEST_SIGN = 0x00000010; // Requests all messages have a signature attached, in NEGOTIATE message.
private static final int FLAG_REQUEST_SEAL = 0x00000020; // Request key exchange for message confidentiality in NEGOTIATE message. MUST be used in conjunction with 56BIT.
private static final int FLAG_REQUEST_LAN_MANAGER_KEY = 0x00000080; // Request Lan Manager key instead of user session key
private static final int FLAG_REQUEST_NTLMv1 = 0x00000200; // Request NTLMv1 security. MUST be set in NEGOTIATE and CHALLENGE both
private static final int FLAG_DOMAIN_PRESENT = 0x00001000; // Domain is present in message
private static final int FLAG_WORKSTATION_PRESENT = 0x00002000; // Workstation is present in message
private static final int FLAG_REQUEST_ALWAYS_SIGN = 0x00008000; // Requests a signature block on all messages. Overridden by REQUEST_SIGN and REQUEST_SEAL.
private static final int FLAG_REQUEST_NTLM2_SESSION = 0x00080000; // From server in challenge, requesting NTLM2 session security
private static final int FLAG_REQUEST_VERSION = 0x02000000; // Request protocol version
private static final int FLAG_TARGETINFO_PRESENT = 0x00800000; // From server in challenge message, indicating targetinfo is present
private static final int FLAG_REQUEST_128BIT_KEY_EXCH = 0x20000000; // Request explicit 128-bit key exchange
private static final int FLAG_REQUEST_EXPLICIT_KEY_EXCH = 0x40000000; // Request explicit key exchange
private static final int FLAG_REQUEST_56BIT_ENCRYPTION = 0x80000000; // Must be used in conjunction with SEAL
/** Secure random generator */
private static final java.security.SecureRandom RND_GEN;
static {
java.security.SecureRandom rnd = null;
try {
rnd = java.security.SecureRandom.getInstance("SHA1PRNG");
} catch (final Exception ignore) {
}
RND_GEN = rnd;
}
/** The signature string as bytes in the default encoding */
private static final byte[] SIGNATURE;
static {
final byte[] bytesWithoutNull = "NTLMSSP".getBytes(US_ASCII);
SIGNATURE = new byte[bytesWithoutNull.length + 1];
System.arraycopy(bytesWithoutNull, 0, SIGNATURE, 0, bytesWithoutNull.length);
SIGNATURE[bytesWithoutNull.length] = (byte) 0x00;
}
private static final String TYPE_1_MESSAGE = new Type1Message().getResponse();
/**
* Creates the type 3 message using the given server nonce. The type 3
* message includes all the information for authentication, host, domain,
* username and the result of encrypting the nonce sent by the server using
* the user's password as the key.
*
* @param user
* The user name. This should not include the domain name.
* @param password
* The password.
* @param host
* The host that is originating the authentication request.
* @param domain
* The domain to authenticate within.
* @param nonce
* the 8 byte array the server sent.
* @return The type 3 message.
* @throws NtlmEngineException
* If {@encrypt(byte[],byte[])} fails.
*/
private String getType3Message(final String user, final String password, final String host, final String domain, final byte[] nonce,
final int type2Flags, final String target, final byte[] targetInformation) throws NtlmEngineException {
return new Type3Message(domain, host, user, password, nonce, type2Flags, target, targetInformation).getResponse();
}
/** Strip dot suffix from a name */
private static String stripDotSuffix(final String value) {
if (value == null) {
return null;
}
final int index = value.indexOf(".");
if (index != -1) {
return value.substring(0, index);
}
return value;
}
/** Convert host to standard form */
private static String convertHost(final String host) {
return stripDotSuffix(host);
}
/** Convert domain to standard form */
private static String convertDomain(final String domain) {
return stripDotSuffix(domain);
}
private static int readULong(final byte[] src, final int index) throws NtlmEngineException {
if (src.length < index + 4) {
throw new NtlmEngineException("NTLM authentication - buffer too small for DWORD");
}
return (src[index] & 0xff) | ((src[index + 1] & 0xff) << 8) | ((src[index + 2] & 0xff) << 16) | ((src[index + 3] & 0xff) << 24);
}
private static int readUShort(final byte[] src, final int index) throws NtlmEngineException {
if (src.length < index + 2) {
throw new NtlmEngineException("NTLM authentication - buffer too small for WORD");
}
return (src[index] & 0xff) | ((src[index + 1] & 0xff) << 8);
}
private static byte[] readSecurityBuffer(final byte[] src, final int index) throws NtlmEngineException {
final int length = readUShort(src, index);
final int offset = readULong(src, index + 4);
if (src.length < offset + length) {
throw new NtlmEngineException("NTLM authentication - buffer too small for data item");
}
final byte[] buffer = new byte[length];
System.arraycopy(src, offset, buffer, 0, length);
return buffer;
}
/** Calculate a challenge block */
private static byte[] makeRandomChallenge() throws NtlmEngineException {
if (RND_GEN == null) {
throw new NtlmEngineException("Random generator not available");
}
final byte[] rval = new byte[8];
synchronized (RND_GEN) {
RND_GEN.nextBytes(rval);
}
return rval;
}
/** Calculate a 16-byte secondary key */
private static byte[] makeSecondaryKey() throws NtlmEngineException {
if (RND_GEN == null) {
throw new NtlmEngineException("Random generator not available");
}
final byte[] rval = new byte[16];
synchronized (RND_GEN) {
RND_GEN.nextBytes(rval);
}
return rval;
}
private static class CipherGen {
protected final String domain;
protected final String user;
protected final String password;
protected final byte[] challenge;
protected final String target;
protected final byte[] targetInformation;
// Information we can generate but may be passed in (for testing)
protected byte[] clientChallenge;
protected byte[] clientChallenge2;
protected byte[] secondaryKey;
protected byte[] timestamp;
// Stuff we always generate
protected byte[] lmHash = null;
protected byte[] lmResponse = null;
protected byte[] ntlmHash = null;
protected byte[] ntlmResponse = null;
protected byte[] ntlmv2Hash = null;
protected byte[] lmv2Hash = null;
protected byte[] lmv2Response = null;
protected byte[] ntlmv2Blob = null;
protected byte[] ntlmv2Response = null;
protected byte[] ntlm2SessionResponse = null;
protected byte[] lm2SessionResponse = null;
protected byte[] lmUserSessionKey = null;
protected byte[] ntlmUserSessionKey = null;
protected byte[] ntlmv2UserSessionKey = null;
protected byte[] ntlm2SessionResponseUserSessionKey = null;
protected byte[] lanManagerSessionKey = null;
public CipherGen(final String domain, final String user, final String password, final byte[] challenge, final String target,
final byte[] targetInformation, final byte[] clientChallenge, final byte[] clientChallenge2, final byte[] secondaryKey,
final byte[] timestamp) {
this.domain = domain;
this.target = target;
this.user = user;
this.password = password;
this.challenge = challenge;
this.targetInformation = targetInformation;
this.clientChallenge = clientChallenge;
this.clientChallenge2 = clientChallenge2;
this.secondaryKey = secondaryKey;
this.timestamp = timestamp;
}
public CipherGen(final String domain, final String user, final String password, final byte[] challenge, final String target,
final byte[] targetInformation) {
this(domain, user, password, challenge, target, targetInformation, null, null, null, null);
}
/** Calculate and return client challenge */
public byte[] getClientChallenge() throws NtlmEngineException {
if (clientChallenge == null) {
clientChallenge = makeRandomChallenge();
}
return clientChallenge;
}
/** Calculate and return second client challenge */
public byte[] getClientChallenge2() throws NtlmEngineException {
if (clientChallenge2 == null) {
clientChallenge2 = makeRandomChallenge();
}
return clientChallenge2;
}
/** Calculate and return random secondary key */
public byte[] getSecondaryKey() throws NtlmEngineException {
if (secondaryKey == null) {
secondaryKey = makeSecondaryKey();
}
return secondaryKey;
}
/** Calculate and return the LMHash */
public byte[] getLMHash() throws NtlmEngineException {
if (lmHash == null) {
lmHash = lmHash(password);
}
return lmHash;
}
/** Calculate and return the LMResponse */
public byte[] getLMResponse() throws NtlmEngineException {
if (lmResponse == null) {
lmResponse = lmResponse(getLMHash(), challenge);
}
return lmResponse;
}
/** Calculate and return the NTLMHash */
public byte[] getNTLMHash() throws NtlmEngineException {
if (ntlmHash == null) {
ntlmHash = ntlmHash(password);
}
return ntlmHash;
}
/** Calculate and return the NTLMResponse */
public byte[] getNTLMResponse() throws NtlmEngineException {
if (ntlmResponse == null) {
ntlmResponse = lmResponse(getNTLMHash(), challenge);
}
return ntlmResponse;
}
/** Calculate the LMv2 hash */
public byte[] getLMv2Hash() throws NtlmEngineException {
if (lmv2Hash == null) {
lmv2Hash = lmv2Hash(domain, user, getNTLMHash());
}
return lmv2Hash;
}
/** Calculate the NTLMv2 hash */
public byte[] getNTLMv2Hash() throws NtlmEngineException {
if (ntlmv2Hash == null) {
ntlmv2Hash = ntlmv2Hash(domain, user, getNTLMHash());
}
return ntlmv2Hash;
}
/** Calculate a timestamp */
public byte[] getTimestamp() {
if (timestamp == null) {
long time = System.currentTimeMillis();
time += 11644473600000l; // milliseconds from January 1, 1601 -> epoch.
time *= 10000; // tenths of a microsecond.
// convert to little-endian byte array.
timestamp = new byte[8];
for (int i = 0; i < 8; i++) {
timestamp[i] = (byte) time;
time >>>= 8;
}
}
return timestamp;
}
/** Calculate the NTLMv2Blob */
public byte[] getNTLMv2Blob() throws NtlmEngineException {
if (ntlmv2Blob == null) {
ntlmv2Blob = createBlob(getClientChallenge2(), targetInformation, getTimestamp());
}
return ntlmv2Blob;
}
/** Calculate the NTLMv2Response */
public byte[] getNTLMv2Response() throws NtlmEngineException {
if (ntlmv2Response == null) {
ntlmv2Response = lmv2Response(getNTLMv2Hash(), challenge, getNTLMv2Blob());
}
return ntlmv2Response;
}
/** Calculate the LMv2Response */
public byte[] getLMv2Response() throws NtlmEngineException {
if (lmv2Response == null) {
lmv2Response = lmv2Response(getLMv2Hash(), challenge, getClientChallenge());
}
return lmv2Response;
}
/** Get NTLM2SessionResponse */
public byte[] getNTLM2SessionResponse() throws NtlmEngineException {
if (ntlm2SessionResponse == null) {
ntlm2SessionResponse = ntlm2SessionResponse(getNTLMHash(), challenge, getClientChallenge());
}
return ntlm2SessionResponse;
}
/** Calculate and return LM2 session response */
public byte[] getLM2SessionResponse() throws NtlmEngineException {
if (lm2SessionResponse == null) {
final byte[] clntChallenge = getClientChallenge();
lm2SessionResponse = new byte[24];
System.arraycopy(clntChallenge, 0, lm2SessionResponse, 0, clntChallenge.length);
Arrays.fill(lm2SessionResponse, clntChallenge.length, lm2SessionResponse.length, (byte) 0x00);
}
return lm2SessionResponse;
}
/** Get LMUserSessionKey */
public byte[] getLMUserSessionKey() throws NtlmEngineException {
if (lmUserSessionKey == null) {
lmUserSessionKey = new byte[16];
System.arraycopy(getLMHash(), 0, lmUserSessionKey, 0, 8);
Arrays.fill(lmUserSessionKey, 8, 16, (byte) 0x00);
}
return lmUserSessionKey;
}
/** Get NTLMUserSessionKey */
public byte[] getNTLMUserSessionKey() throws NtlmEngineException {
if (ntlmUserSessionKey == null) {
final MD4 md4 = new MD4();
md4.update(getNTLMHash());
ntlmUserSessionKey = md4.getOutput();
}
return ntlmUserSessionKey;
}
/** GetNTLMv2UserSessionKey */
public byte[] getNTLMv2UserSessionKey() throws NtlmEngineException {
if (ntlmv2UserSessionKey == null) {
final byte[] ntlmv2hash = getNTLMv2Hash();
final byte[] truncatedResponse = new byte[16];
System.arraycopy(getNTLMv2Response(), 0, truncatedResponse, 0, 16);
ntlmv2UserSessionKey = hmacMD5(truncatedResponse, ntlmv2hash);
}
return ntlmv2UserSessionKey;
}
/** Get NTLM2SessionResponseUserSessionKey */
public byte[] getNTLM2SessionResponseUserSessionKey() throws NtlmEngineException {
if (ntlm2SessionResponseUserSessionKey == null) {
final byte[] ntlm2SessionResponseNonce = getLM2SessionResponse();
final byte[] sessionNonce = new byte[challenge.length + ntlm2SessionResponseNonce.length];
System.arraycopy(challenge, 0, sessionNonce, 0, challenge.length);
System.arraycopy(ntlm2SessionResponseNonce, 0, sessionNonce, challenge.length, ntlm2SessionResponseNonce.length);
ntlm2SessionResponseUserSessionKey = hmacMD5(sessionNonce, getNTLMUserSessionKey());
}
return ntlm2SessionResponseUserSessionKey;
}
/** Get LAN Manager session key */
public byte[] getLanManagerSessionKey() throws NtlmEngineException {
if (lanManagerSessionKey == null) {
try {
final byte[] keyBytes = new byte[14];
System.arraycopy(getLMHash(), 0, keyBytes, 0, 8);
Arrays.fill(keyBytes, 8, keyBytes.length, (byte) 0xbd);
final Key lowKey = createDESKey(keyBytes, 0);
final Key highKey = createDESKey(keyBytes, 7);
final byte[] truncatedResponse = new byte[8];
System.arraycopy(getLMResponse(), 0, truncatedResponse, 0, truncatedResponse.length);
Cipher des = Cipher.getInstance("DES/ECB/NoPadding");
des.init(Cipher.ENCRYPT_MODE, lowKey);
final byte[] lowPart = des.doFinal(truncatedResponse);
des = Cipher.getInstance("DES/ECB/NoPadding");
des.init(Cipher.ENCRYPT_MODE, highKey);
final byte[] highPart = des.doFinal(truncatedResponse);
lanManagerSessionKey = new byte[16];
System.arraycopy(lowPart, 0, lanManagerSessionKey, 0, lowPart.length);
System.arraycopy(highPart, 0, lanManagerSessionKey, lowPart.length, highPart.length);
} catch (final Exception e) {
throw new NtlmEngineException(e.getMessage(), e);
}
}
return lanManagerSessionKey;
}
}
/** Calculates HMAC-MD5 */
private static byte[] hmacMD5(final byte[] value, final byte[] key) throws NtlmEngineException {
final HMACMD5 hmacMD5 = new HMACMD5(key);
hmacMD5.update(value);
return hmacMD5.getOutput();
}
/** Calculates RC4 */
private static byte[] RC4(final byte[] value, final byte[] key) throws NtlmEngineException {
try {
final Cipher rc4 = Cipher.getInstance("RC4");
rc4.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(key, "RC4"));
return rc4.doFinal(value);
} catch (final Exception e) {
throw new NtlmEngineException(e.getMessage(), e);
}
}
/**
* Calculates the NTLM2 Session Response for the given challenge, using the
* specified password and client challenge.
*
* @return The NTLM2 Session Response. This is placed in the NTLM response
* field of the Type 3 message; the LM response field contains the
* client challenge, null-padded to 24 bytes.
*/
private static byte[] ntlm2SessionResponse(final byte[] ntlmHash, final byte[] challenge, final byte[] clientChallenge)
throws NtlmEngineException {
try {
// Look up MD5 algorithm (was necessary on jdk 1.4.2)
// This used to be needed, but java 1.5.0_07 includes the MD5
// algorithm (finally)
// Class x = Class.forName("gnu.crypto.hash.MD5");
// Method updateMethod = x.getMethod("update",new
// Class[]{byte[].class});
// Method digestMethod = x.getMethod("digest",new Class[0]);
// Object mdInstance = x.newInstance();
// updateMethod.invoke(mdInstance,new Object[]{challenge});
// updateMethod.invoke(mdInstance,new Object[]{clientChallenge});
// byte[] digest = (byte[])digestMethod.invoke(mdInstance,new
// Object[0]);
final MessageDigest md5 = MessageDigest.getInstance("MD5");
md5.update(challenge);
md5.update(clientChallenge);
final byte[] digest = md5.digest();
final byte[] sessionHash = new byte[8];
System.arraycopy(digest, 0, sessionHash, 0, 8);
return lmResponse(ntlmHash, sessionHash);
} catch (final Exception e) {
if (e instanceof NtlmEngineException) {
throw (NtlmEngineException) e;
}
throw new NtlmEngineException(e.getMessage(), e);
}
}
/**
* Creates the LM Hash of the user's password.
*
* @param password
* The password.
*
* @return The LM Hash of the given password, used in the calculation of the
* LM Response.
*/
private static byte[] lmHash(final String password) throws NtlmEngineException {
try {
final byte[] oemPassword = password.toUpperCase(Locale.ROOT).getBytes(US_ASCII);
final int length = Math.min(oemPassword.length, 14);
final byte[] keyBytes = new byte[14];
System.arraycopy(oemPassword, 0, keyBytes, 0, length);
final Key lowKey = createDESKey(keyBytes, 0);
final Key highKey = createDESKey(keyBytes, 7);
final Cipher des = Cipher.getInstance("DES/ECB/NoPadding");
des.init(Cipher.ENCRYPT_MODE, lowKey);
final byte[] lowHash = des.doFinal(MAGIC_CONSTANT);
des.init(Cipher.ENCRYPT_MODE, highKey);
final byte[] highHash = des.doFinal(MAGIC_CONSTANT);
final byte[] lmHash = new byte[16];
System.arraycopy(lowHash, 0, lmHash, 0, 8);
System.arraycopy(highHash, 0, lmHash, 8, 8);
return lmHash;
} catch (final Exception e) {
throw new NtlmEngineException(e.getMessage(), e);
}
}
/**
* Creates the NTLM Hash of the user's password.
*
* @param password
* The password.
*
* @return The NTLM Hash of the given password, used in the calculation of
* the NTLM Response and the NTLMv2 and LMv2 Hashes.
*/
private static byte[] ntlmHash(final String password) throws NtlmEngineException {
if (UNICODE_LITTLE_UNMARKED == null) {
throw new NtlmEngineException("Unicode not supported");
}
final byte[] unicodePassword = password.getBytes(UNICODE_LITTLE_UNMARKED);
final MD4 md4 = new MD4();
md4.update(unicodePassword);
return md4.getOutput();
}
/**
* Creates the LMv2 Hash of the user's password.
*
* @return The LMv2 Hash, used in the calculation of the NTLMv2 and LMv2
* Responses.
*/
private static byte[] lmv2Hash(final String domain, final String user, final byte[] ntlmHash) throws NtlmEngineException {
if (UNICODE_LITTLE_UNMARKED == null) {
throw new NtlmEngineException("Unicode not supported");
}
final HMACMD5 hmacMD5 = new HMACMD5(ntlmHash);
// Upper case username, upper case domain!
hmacMD5.update(user.toUpperCase(Locale.ROOT).getBytes(UNICODE_LITTLE_UNMARKED));
if (domain != null) {
hmacMD5.update(domain.toUpperCase(Locale.ROOT).getBytes(UNICODE_LITTLE_UNMARKED));
}
return hmacMD5.getOutput();
}
/**
* Creates the NTLMv2 Hash of the user's password.
*
* @return The NTLMv2 Hash, used in the calculation of the NTLMv2 and LMv2
* Responses.
*/
private static byte[] ntlmv2Hash(final String domain, final String user, final byte[] ntlmHash) throws NtlmEngineException {
if (UNICODE_LITTLE_UNMARKED == null) {
throw new NtlmEngineException("Unicode not supported");
}
final HMACMD5 hmacMD5 = new HMACMD5(ntlmHash);
// Upper case username, mixed case target!!
hmacMD5.update(user.toUpperCase(Locale.ROOT).getBytes(UNICODE_LITTLE_UNMARKED));
if (domain != null) {
hmacMD5.update(domain.getBytes(UNICODE_LITTLE_UNMARKED));
}
return hmacMD5.getOutput();
}
/**
* Creates the LM Response from the given hash and Type 2 challenge.
*
* @param hash
* The LM or NTLM Hash.
* @param challenge
* The server challenge from the Type 2 message.
*
* @return The response (either LM or NTLM, depending on the provided hash).
*/
private static byte[] lmResponse(final byte[] hash, final byte[] challenge) throws NtlmEngineException {
try {
final byte[] keyBytes = new byte[21];
System.arraycopy(hash, 0, keyBytes, 0, 16);
final Key lowKey = createDESKey(keyBytes, 0);
final Key middleKey = createDESKey(keyBytes, 7);
final Key highKey = createDESKey(keyBytes, 14);
final Cipher des = Cipher.getInstance("DES/ECB/NoPadding");
des.init(Cipher.ENCRYPT_MODE, lowKey);
final byte[] lowResponse = des.doFinal(challenge);
des.init(Cipher.ENCRYPT_MODE, middleKey);
final byte[] middleResponse = des.doFinal(challenge);
des.init(Cipher.ENCRYPT_MODE, highKey);
final byte[] highResponse = des.doFinal(challenge);
final byte[] lmResponse = new byte[24];
System.arraycopy(lowResponse, 0, lmResponse, 0, 8);
System.arraycopy(middleResponse, 0, lmResponse, 8, 8);
System.arraycopy(highResponse, 0, lmResponse, 16, 8);
return lmResponse;
} catch (final Exception e) {
throw new NtlmEngineException(e.getMessage(), e);
}
}
/**
* Creates the LMv2 Response from the given hash, client data, and Type 2
* challenge.
*
* @param hash
* The NTLMv2 Hash.
* @param clientData
* The client data (blob or client challenge).
* @param challenge
* The server challenge from the Type 2 message.
*
* @return The response (either NTLMv2 or LMv2, depending on the client
* data).
*/
private static byte[] lmv2Response(final byte[] hash, final byte[] challenge, final byte[] clientData) throws NtlmEngineException {
final HMACMD5 hmacMD5 = new HMACMD5(hash);
hmacMD5.update(challenge);
hmacMD5.update(clientData);
final byte[] mac = hmacMD5.getOutput();
final byte[] lmv2Response = new byte[mac.length + clientData.length];
System.arraycopy(mac, 0, lmv2Response, 0, mac.length);
System.arraycopy(clientData, 0, lmv2Response, mac.length, clientData.length);
return lmv2Response;
}
/**
* Creates the NTLMv2 blob from the given target information block and
* client challenge.
*
* @param targetInformation
* The target information block from the Type 2 message.
* @param clientChallenge
* The random 8-byte client challenge.
*
* @return The blob, used in the calculation of the NTLMv2 Response.
*/
private static byte[] createBlob(final byte[] clientChallenge, final byte[] targetInformation, final byte[] timestamp) {
final byte[] blobSignature = new byte[] { (byte) 0x01, (byte) 0x01, (byte) 0x00, (byte) 0x00 };
final byte[] reserved = new byte[] { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00 };
final byte[] unknown1 = new byte[] { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00 };
final byte[] unknown2 = new byte[] { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00 };
final byte[] blob = new byte[blobSignature.length + reserved.length + timestamp.length + 8 + unknown1.length
+ targetInformation.length + unknown2.length];
int offset = 0;
System.arraycopy(blobSignature, 0, blob, offset, blobSignature.length);
offset += blobSignature.length;
System.arraycopy(reserved, 0, blob, offset, reserved.length);
offset += reserved.length;
System.arraycopy(timestamp, 0, blob, offset, timestamp.length);
offset += timestamp.length;
System.arraycopy(clientChallenge, 0, blob, offset, 8);
offset += 8;
System.arraycopy(unknown1, 0, blob, offset, unknown1.length);
offset += unknown1.length;
System.arraycopy(targetInformation, 0, blob, offset, targetInformation.length);
offset += targetInformation.length;
System.arraycopy(unknown2, 0, blob, offset, unknown2.length);
offset += unknown2.length;
return blob;
}
/**
* Creates a DES encryption key from the given key material.
*
* @param bytes
* A byte array containing the DES key material.
* @param offset
* The offset in the given byte array at which the 7-byte key
* material starts.
*
* @return A DES encryption key created from the key material starting at
* the specified offset in the given byte array.
*/
private static Key createDESKey(final byte[] bytes, final int offset) {
final byte[] keyBytes = new byte[7];
System.arraycopy(bytes, offset, keyBytes, 0, 7);
final byte[] material = new byte[8];
material[0] = keyBytes[0];
material[1] = (byte) (keyBytes[0] << 7 | (keyBytes[1] & 0xff) >>> 1);
material[2] = (byte) (keyBytes[1] << 6 | (keyBytes[2] & 0xff) >>> 2);
material[3] = (byte) (keyBytes[2] << 5 | (keyBytes[3] & 0xff) >>> 3);
material[4] = (byte) (keyBytes[3] << 4 | (keyBytes[4] & 0xff) >>> 4);
material[5] = (byte) (keyBytes[4] << 3 | (keyBytes[5] & 0xff) >>> 5);
material[6] = (byte) (keyBytes[5] << 2 | (keyBytes[6] & 0xff) >>> 6);
material[7] = (byte) (keyBytes[6] << 1);
oddParity(material);
return new SecretKeySpec(material, "DES");
}
/**
* Applies odd parity to the given byte array.
*
* @param bytes
* The data whose parity bits are to be adjusted for odd parity.
*/
private static void oddParity(final byte[] bytes) {
for (int i = 0; i < bytes.length; i++) {
final byte b = bytes[i];
final boolean needsParity = (((b >>> 7) ^ (b >>> 6) ^ (b >>> 5) ^ (b >>> 4) ^ (b >>> 3) ^ (b >>> 2) ^ (b >>> 1)) & 0x01) == 0;
if (needsParity) {
bytes[i] |= (byte) 0x01;
} else {
bytes[i] &= (byte) 0xfe;
}
}
}
/** NTLM message generation, base class */
private static class NTLMMessage {
/** The current response */
private byte[] messageContents = null;
/** The current output position */
private int currentOutputPosition = 0;
/** Constructor to use when message contents are not yet known */
NTLMMessage() {
}
/** Constructor to use when message contents are known */
NTLMMessage(final String messageBody, final int expectedType) throws NtlmEngineException {
messageContents = Base64.decode(messageBody);
// Look for NTLM message
if (messageContents.length < SIGNATURE.length) {
throw new NtlmEngineException("NTLM message decoding error - packet too short");
}
int i = 0;
while (i < SIGNATURE.length) {
if (messageContents[i] != SIGNATURE[i]) {
throw new NtlmEngineException("NTLM message expected - instead got unrecognized bytes");
}
i++;
}
// Check to be sure there's a type 2 message indicator next
final int type = readULong(SIGNATURE.length);
if (type != expectedType) {
throw new NtlmEngineException("NTLM type " + Integer.toString(expectedType) + " message expected - instead got type "
+ Integer.toString(type));
}
currentOutputPosition = messageContents.length;
}
/**
* Get the length of the signature and flags, so calculations can adjust
* offsets accordingly.
*/
protected int getPreambleLength() {
return SIGNATURE.length + 4;
}
/** Get the message length */
protected final int getMessageLength() {
return currentOutputPosition;
}
/** Read a byte from a position within the message buffer */
protected byte readByte(final int position) throws NtlmEngineException {
if (messageContents.length < position + 1) {
throw new NtlmEngineException("NTLM: Message too short");
}
return messageContents[position];
}
/** Read a bunch of bytes from a position in the message buffer */
protected final void readBytes(final byte[] buffer, final int position) throws NtlmEngineException {
if (messageContents.length < position + buffer.length) {
throw new NtlmEngineException("NTLM: Message too short");
}
System.arraycopy(messageContents, position, buffer, 0, buffer.length);
}
/** Read a ushort from a position within the message buffer */
protected int readUShort(final int position) throws NtlmEngineException {
return NtlmEngine.readUShort(messageContents, position);
}
/** Read a ulong from a position within the message buffer */
protected final int readULong(final int position) throws NtlmEngineException {
return NtlmEngine.readULong(messageContents, position);
}
/** Read a security buffer from a position within the message buffer */
protected final byte[] readSecurityBuffer(final int position) throws NtlmEngineException {
return NtlmEngine.readSecurityBuffer(messageContents, position);
}
/**
* Prepares the object to create a response of the given length.
*
* @param maxlength
* the maximum length of the response to prepare, not
* including the type and the signature (which this method
* adds).
*/
protected void prepareResponse(final int maxlength, final int messageType) {
messageContents = new byte[maxlength];
currentOutputPosition = 0;
addBytes(SIGNATURE);
addULong(messageType);
}
/**
* Adds the given byte to the response.
*
* @param b
* the byte to add.
*/
protected void addByte(final byte b) {
messageContents[currentOutputPosition] = b;
currentOutputPosition++;
}
/**
* Adds the given bytes to the response.
*
* @param bytes
* the bytes to add.
*/
protected void addBytes(final byte[] bytes) {
if (bytes == null) {
return;
}
for (final byte b : bytes) {
messageContents[currentOutputPosition] = b;
currentOutputPosition++;
}
}
/** Adds a USHORT to the response */
protected void addUShort(final int value) {
addByte((byte) (value & 0xff));
addByte((byte) (value >> 8 & 0xff));
}
/** Adds a ULong to the response */
protected void addULong(final int value) {
addByte((byte) (value & 0xff));
addByte((byte) (value >> 8 & 0xff));
addByte((byte) (value >> 16 & 0xff));
addByte((byte) (value >> 24 & 0xff));
}
/**
* Returns the response that has been generated after shrinking the
* array if required and base64 encodes the response.
*
* @return The response as above.
*/
String getResponse() {
final byte[] resp;
if (messageContents.length > currentOutputPosition) {
final byte[] tmp = new byte[currentOutputPosition];
System.arraycopy(messageContents, 0, tmp, 0, currentOutputPosition);
resp = tmp;
} else {
resp = messageContents;
}
return Base64.encode(resp);
}
}
/** Type 1 message assembly class */
private static class Type1Message extends NTLMMessage {
/**
* Getting the response involves building the message before returning
* it
*/
@Override
String getResponse() {
// Now, build the message. Calculate its length first, including
// signature or type.
final int finalLength = 32 + 8;
// Set up the response. This will initialize the signature, message
// type, and flags.
prepareResponse(finalLength, 1);
// Flags. These are the complete set of flags we support.
addULong(
//FLAG_WORKSTATION_PRESENT |
//FLAG_DOMAIN_PRESENT |
// Required flags
//FLAG_REQUEST_LAN_MANAGER_KEY |
FLAG_REQUEST_NTLMv1 | FLAG_REQUEST_NTLM2_SESSION |
// Protocol version request
FLAG_REQUEST_VERSION |
// Recommended privacy settings
FLAG_REQUEST_ALWAYS_SIGN |
//FLAG_REQUEST_SEAL |
//FLAG_REQUEST_SIGN |
// These must be set according to documentation, based on use of SEAL above
FLAG_REQUEST_128BIT_KEY_EXCH | FLAG_REQUEST_56BIT_ENCRYPTION |
//FLAG_REQUEST_EXPLICIT_KEY_EXCH |
FLAG_REQUEST_UNICODE_ENCODING);
// Domain length (two times).
addUShort(0);
addUShort(0);
// Domain offset.
addULong(finalLength);
// Host length (two times).
addUShort(0);
addUShort(0);
// Host offset (always 32 + 8).
addULong(finalLength);
// Version
addUShort(0x0105);
// Build
addULong(2600);
// NTLM revision
addUShort(0x0f00);
return super.getResponse();
}
}
/** Type 2 message class */
static class Type2Message extends NTLMMessage {
protected byte[] challenge;
protected String target;
protected byte[] targetInfo;
protected int flags;
Type2Message(final String message) throws NtlmEngineException {
super(message, 2);
// Type 2 message is laid out as follows:
// First 8 bytes: NTLMSSP[0]
// Next 4 bytes: Ulong, value 2
// Next 8 bytes, starting at offset 12: target field (2 ushort lengths, 1 ulong offset)
// Next 4 bytes, starting at offset 20: Flags, e.g. 0x22890235
// Next 8 bytes, starting at offset 24: Challenge
// Next 8 bytes, starting at offset 32: ??? (8 bytes of zeros)
// Next 8 bytes, starting at offset 40: targetinfo field (2 ushort lengths, 1 ulong offset)
// Next 2 bytes, major/minor version number (e.g. 0x05 0x02)
// Next 8 bytes, build number
// Next 2 bytes, protocol version number (e.g. 0x00 0x0f)
// Next, various text fields, and a ushort of value 0 at the end
// Parse out the rest of the info we need from the message
// The nonce is the 8 bytes starting from the byte in position 24.
challenge = new byte[8];
readBytes(challenge, 24);
flags = readULong(20);
if ((flags & FLAG_REQUEST_UNICODE_ENCODING) == 0) {
throw new NtlmEngineException("NTLM type 2 message indicates no support for Unicode. Flags are: " + Integer.toString(flags));
}
// Do the target!
target = null;
// The TARGET_DESIRED flag is said to not have understood semantics
// in Type2 messages, so use the length of the packet to decide
// how to proceed instead
if (getMessageLength() >= 12 + 8) {
final byte[] bytes = readSecurityBuffer(12);
if (bytes.length != 0) {
try {
target = new String(bytes, "UnicodeLittleUnmarked");
} catch (final UnsupportedEncodingException e) {
throw new NtlmEngineException(e.getMessage(), e);
}
}
}
// Do the target info!
targetInfo = null;
// TARGET_DESIRED flag cannot be relied on, so use packet length
if (getMessageLength() >= 40 + 8) {
final byte[] bytes = readSecurityBuffer(40);
if (bytes.length != 0) {
targetInfo = bytes;
}
}
}
/** Retrieve the challenge */
byte[] getChallenge() {
return challenge;
}
/** Retrieve the target */
String getTarget() {
return target;
}
/** Retrieve the target info */
byte[] getTargetInfo() {
return targetInfo;
}
/** Retrieve the response flags */
int getFlags() {
return flags;
}
}
/** Type 3 message assembly class */
static class Type3Message extends NTLMMessage {
// Response flags from the type2 message
protected int type2Flags;
protected byte[] domainBytes;
protected byte[] hostBytes;
protected byte[] userBytes;
protected byte[] lmResp;
protected byte[] ntResp;
protected byte[] sessionKey;
/** Constructor. Pass the arguments we will need */
Type3Message(final String domain, final String host, final String user, final String password, final byte[] nonce,
final int type2Flags, final String target, final byte[] targetInformation) throws NtlmEngineException {
// Save the flags
this.type2Flags = type2Flags;
// Strip off domain name from the host!
final String unqualifiedHost = convertHost(host);
// Use only the base domain name!
final String unqualifiedDomain = convertDomain(domain);
// Create a cipher generator class. Use domain BEFORE it gets modified!
final CipherGen gen = new CipherGen(unqualifiedDomain, user, password, nonce, target, targetInformation);
// Use the new code to calculate the responses, including v2 if that
// seems warranted.
byte[] userSessionKey;
try {
// This conditional may not work on Windows Server 2008 R2 and above, where it has not yet
// been tested
if (((type2Flags & FLAG_TARGETINFO_PRESENT) != 0) && targetInformation != null && target != null) {
// NTLMv2
ntResp = gen.getNTLMv2Response();
lmResp = gen.getLMv2Response();
if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) {
userSessionKey = gen.getLanManagerSessionKey();
} else {
userSessionKey = gen.getNTLMv2UserSessionKey();
}
} else {
// NTLMv1
if ((type2Flags & FLAG_REQUEST_NTLM2_SESSION) != 0) {
// NTLM2 session stuff is requested
ntResp = gen.getNTLM2SessionResponse();
lmResp = gen.getLM2SessionResponse();
if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) {
userSessionKey = gen.getLanManagerSessionKey();
} else {
userSessionKey = gen.getNTLM2SessionResponseUserSessionKey();
}
} else {
ntResp = gen.getNTLMResponse();
lmResp = gen.getLMResponse();
if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) {
userSessionKey = gen.getLanManagerSessionKey();
} else {
userSessionKey = gen.getNTLMUserSessionKey();
}
}
}
} catch (final NtlmEngineException e) {
// This likely means we couldn't find the MD4 hash algorithm -
// fail back to just using LM
ntResp = new byte[0];
lmResp = gen.getLMResponse();
if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) {
userSessionKey = gen.getLanManagerSessionKey();
} else {
userSessionKey = gen.getLMUserSessionKey();
}
}
if ((type2Flags & FLAG_REQUEST_SIGN) != 0) {
if ((type2Flags & FLAG_REQUEST_EXPLICIT_KEY_EXCH) != 0) {
sessionKey = RC4(gen.getSecondaryKey(), userSessionKey);
} else {
sessionKey = userSessionKey;
}
} else {
sessionKey = null;
}
if (UNICODE_LITTLE_UNMARKED == null) {
throw new NtlmEngineException("Unicode not supported");
}
hostBytes = unqualifiedHost != null ? unqualifiedHost.getBytes(UNICODE_LITTLE_UNMARKED) : null;
domainBytes = unqualifiedDomain != null ? unqualifiedDomain.toUpperCase(Locale.ROOT).getBytes(UNICODE_LITTLE_UNMARKED) : null;
userBytes = user.getBytes(UNICODE_LITTLE_UNMARKED);
}
/** Assemble the response */
@Override
String getResponse() {
final int ntRespLen = ntResp.length;
final int lmRespLen = lmResp.length;
final int domainLen = domainBytes != null ? domainBytes.length : 0;
final int hostLen = hostBytes != null ? hostBytes.length : 0;
final int userLen = userBytes.length;
final int sessionKeyLen;
if (sessionKey != null) {
sessionKeyLen = sessionKey.length;
} else {
sessionKeyLen = 0;
}
// Calculate the layout within the packet
final int lmRespOffset = 72; // allocate space for the version
final int ntRespOffset = lmRespOffset + lmRespLen;
final int domainOffset = ntRespOffset + ntRespLen;
final int userOffset = domainOffset + domainLen;
final int hostOffset = userOffset + userLen;
final int sessionKeyOffset = hostOffset + hostLen;
final int finalLength = sessionKeyOffset + sessionKeyLen;
// Start the response. Length includes signature and type
prepareResponse(finalLength, 3);
// LM Resp Length (twice)
addUShort(lmRespLen);
addUShort(lmRespLen);
// LM Resp Offset
addULong(lmRespOffset);
// NT Resp Length (twice)
addUShort(ntRespLen);
addUShort(ntRespLen);
// NT Resp Offset
addULong(ntRespOffset);
// Domain length (twice)
addUShort(domainLen);
addUShort(domainLen);
// Domain offset.
addULong(domainOffset);
// User Length (twice)
addUShort(userLen);
addUShort(userLen);
// User offset
addULong(userOffset);
// Host length (twice)
addUShort(hostLen);
addUShort(hostLen);
// Host offset
addULong(hostOffset);
// Session key length (twice)
addUShort(sessionKeyLen);
addUShort(sessionKeyLen);
// Session key offset
addULong(sessionKeyOffset);
// Flags.
addULong(
//FLAG_WORKSTATION_PRESENT |
//FLAG_DOMAIN_PRESENT |
// Required flags
(type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY)
| (type2Flags & FLAG_REQUEST_NTLMv1)
| (type2Flags & FLAG_REQUEST_NTLM2_SESSION)
|
// Protocol version request
FLAG_REQUEST_VERSION
|
// Recommended privacy settings
(type2Flags & FLAG_REQUEST_ALWAYS_SIGN) | (type2Flags & FLAG_REQUEST_SEAL)
| (type2Flags & FLAG_REQUEST_SIGN)
|
// These must be set according to documentation, based on use of SEAL above
(type2Flags & FLAG_REQUEST_128BIT_KEY_EXCH) | (type2Flags & FLAG_REQUEST_56BIT_ENCRYPTION)
| (type2Flags & FLAG_REQUEST_EXPLICIT_KEY_EXCH) |
(type2Flags & FLAG_TARGETINFO_PRESENT) | (type2Flags & FLAG_REQUEST_UNICODE_ENCODING)
| (type2Flags & FLAG_REQUEST_TARGET));
// Version
addUShort(0x0105);
// Build
addULong(2600);
// NTLM revision
addUShort(0x0f00);
// Add the actual data
addBytes(lmResp);
addBytes(ntResp);
addBytes(domainBytes);
addBytes(userBytes);
addBytes(hostBytes);
if (sessionKey != null) {
addBytes(sessionKey);
}
return super.getResponse();
}
}
static void writeULong(final byte[] buffer, final int value, final int offset) {
buffer[offset] = (byte) (value & 0xff);
buffer[offset + 1] = (byte) (value >> 8 & 0xff);
buffer[offset + 2] = (byte) (value >> 16 & 0xff);
buffer[offset + 3] = (byte) (value >> 24 & 0xff);
}
static int F(final int x, final int y, final int z) {
return ((x & y) | (~x & z));
}
static int G(final int x, final int y, final int z) {
return ((x & y) | (x & z) | (y & z));
}
static int H(final int x, final int y, final int z) {
return (x ^ y ^ z);
}
static int rotintlft(final int val, final int numbits) {
return ((val << numbits) | (val >>> (32 - numbits)));
}
/**
* Cryptography support - MD4. The following class was based loosely on the
* RFC and on code found at http://www.cs.umd.edu/~harry/jotp/src/md.java.
* Code correctness was verified by looking at MD4.java from the jcifs
* library (http://jcifs.samba.org). It was massaged extensively to the
* final form found here by Karl Wright ([email protected]).
*/
static class MD4 {
protected int A = 0x67452301;
protected int B = 0xefcdab89;
protected int C = 0x98badcfe;
protected int D = 0x10325476;
protected long count = 0L;
protected byte[] dataBuffer = new byte[64];
MD4() {
}
void update(final byte[] input) {
// We always deal with 512 bits at a time. Correspondingly, there is
// a buffer 64 bytes long that we write data into until it gets
// full.
int curBufferPos = (int) (count & 63L);
int inputIndex = 0;
while (input.length - inputIndex + curBufferPos >= dataBuffer.length) {
// We have enough data to do the next step. Do a partial copy
// and a transform, updating inputIndex and curBufferPos
// accordingly
final int transferAmt = dataBuffer.length - curBufferPos;
System.arraycopy(input, inputIndex, dataBuffer, curBufferPos, transferAmt);
count += transferAmt;
curBufferPos = 0;
inputIndex += transferAmt;
processBuffer();
}
// If there's anything left, copy it into the buffer and leave it.
// We know there's not enough left to process.
if (inputIndex < input.length) {
final int transferAmt = input.length - inputIndex;
System.arraycopy(input, inputIndex, dataBuffer, curBufferPos, transferAmt);
count += transferAmt;
curBufferPos += transferAmt;
}
}
byte[] getOutput() {
// Feed pad/length data into engine. This must round out the input
// to a multiple of 512 bits.
final int bufferIndex = (int) (count & 63L);
final int padLen = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
final byte[] postBytes = new byte[padLen + 8];
// Leading 0x80, specified amount of zero padding, then length in
// bits.
postBytes[0] = (byte) 0x80;
// Fill out the last 8 bytes with the length
for (int i = 0; i < 8; i++) {
postBytes[padLen + i] = (byte) ((count * 8) >>> (8 * i));
}
// Update the engine
update(postBytes);
// Calculate final result
final byte[] result = new byte[16];
writeULong(result, A, 0);
writeULong(result, B, 4);
writeULong(result, C, 8);
writeULong(result, D, 12);
return result;
}
protected void processBuffer() {
// Convert current buffer to 16 ulongs
final int[] d = new int[16];
for (int i = 0; i < 16; i++) {
d[i] = (dataBuffer[i * 4] & 0xff) + ((dataBuffer[i * 4 + 1] & 0xff) << 8) + ((dataBuffer[i * 4 + 2] & 0xff) << 16)
+ ((dataBuffer[i * 4 + 3] & 0xff) << 24);
}
// Do a round of processing
final int AA = A;
final int BB = B;
final int CC = C;
final int DD = D;
round1(d);
round2(d);
round3(d);
A += AA;
B += BB;
C += CC;
D += DD;
}
protected void round1(final int[] d) {
A = rotintlft((A + F(B, C, D) + d[0]), 3);
D = rotintlft((D + F(A, B, C) + d[1]), 7);
C = rotintlft((C + F(D, A, B) + d[2]), 11);
B = rotintlft((B + F(C, D, A) + d[3]), 19);
A = rotintlft((A + F(B, C, D) + d[4]), 3);
D = rotintlft((D + F(A, B, C) + d[5]), 7);
C = rotintlft((C + F(D, A, B) + d[6]), 11);
B = rotintlft((B + F(C, D, A) + d[7]), 19);
A = rotintlft((A + F(B, C, D) + d[8]), 3);
D = rotintlft((D + F(A, B, C) + d[9]), 7);
C = rotintlft((C + F(D, A, B) + d[10]), 11);
B = rotintlft((B + F(C, D, A) + d[11]), 19);
A = rotintlft((A + F(B, C, D) + d[12]), 3);
D = rotintlft((D + F(A, B, C) + d[13]), 7);
C = rotintlft((C + F(D, A, B) + d[14]), 11);
B = rotintlft((B + F(C, D, A) + d[15]), 19);
}
protected void round2(final int[] d) {
A = rotintlft((A + G(B, C, D) + d[0] + 0x5a827999), 3);
D = rotintlft((D + G(A, B, C) + d[4] + 0x5a827999), 5);
C = rotintlft((C + G(D, A, B) + d[8] + 0x5a827999), 9);
B = rotintlft((B + G(C, D, A) + d[12] + 0x5a827999), 13);
A = rotintlft((A + G(B, C, D) + d[1] + 0x5a827999), 3);
D = rotintlft((D + G(A, B, C) + d[5] + 0x5a827999), 5);
C = rotintlft((C + G(D, A, B) + d[9] + 0x5a827999), 9);
B = rotintlft((B + G(C, D, A) + d[13] + 0x5a827999), 13);
A = rotintlft((A + G(B, C, D) + d[2] + 0x5a827999), 3);
D = rotintlft((D + G(A, B, C) + d[6] + 0x5a827999), 5);
C = rotintlft((C + G(D, A, B) + d[10] + 0x5a827999), 9);
B = rotintlft((B + G(C, D, A) + d[14] + 0x5a827999), 13);
A = rotintlft((A + G(B, C, D) + d[3] + 0x5a827999), 3);
D = rotintlft((D + G(A, B, C) + d[7] + 0x5a827999), 5);
C = rotintlft((C + G(D, A, B) + d[11] + 0x5a827999), 9);
B = rotintlft((B + G(C, D, A) + d[15] + 0x5a827999), 13);
}
protected void round3(final int[] d) {
A = rotintlft((A + H(B, C, D) + d[0] + 0x6ed9eba1), 3);
D = rotintlft((D + H(A, B, C) + d[8] + 0x6ed9eba1), 9);
C = rotintlft((C + H(D, A, B) + d[4] + 0x6ed9eba1), 11);
B = rotintlft((B + H(C, D, A) + d[12] + 0x6ed9eba1), 15);
A = rotintlft((A + H(B, C, D) + d[2] + 0x6ed9eba1), 3);
D = rotintlft((D + H(A, B, C) + d[10] + 0x6ed9eba1), 9);
C = rotintlft((C + H(D, A, B) + d[6] + 0x6ed9eba1), 11);
B = rotintlft((B + H(C, D, A) + d[14] + 0x6ed9eba1), 15);
A = rotintlft((A + H(B, C, D) + d[1] + 0x6ed9eba1), 3);
D = rotintlft((D + H(A, B, C) + d[9] + 0x6ed9eba1), 9);
C = rotintlft((C + H(D, A, B) + d[5] + 0x6ed9eba1), 11);
B = rotintlft((B + H(C, D, A) + d[13] + 0x6ed9eba1), 15);
A = rotintlft((A + H(B, C, D) + d[3] + 0x6ed9eba1), 3);
D = rotintlft((D + H(A, B, C) + d[11] + 0x6ed9eba1), 9);
C = rotintlft((C + H(D, A, B) + d[7] + 0x6ed9eba1), 11);
B = rotintlft((B + H(C, D, A) + d[15] + 0x6ed9eba1), 15);
}
}
/**
* Cryptography support - HMACMD5 - algorithmically based on various web
* resources by Karl Wright
*/
private static class HMACMD5 {
protected byte[] ipad;
protected byte[] opad;
protected MessageDigest md5;
HMACMD5(final byte[] input) throws NtlmEngineException {
byte[] key = input;
try {
md5 = MessageDigest.getInstance("MD5");
} catch (final Exception ex) {
// Umm, the algorithm doesn't exist - throw an
// NTLMEngineException!
throw new NtlmEngineException("Error getting md5 message digest implementation: " + ex.getMessage(), ex);
}
// Initialize the pad buffers with the key
ipad = new byte[64];
opad = new byte[64];
int keyLength = key.length;
if (keyLength > 64) {
// Use MD5 of the key instead, as described in RFC 2104
md5.update(key);
key = md5.digest();
keyLength = key.length;
}
int i = 0;
while (i < keyLength) {
ipad[i] = (byte) (key[i] ^ (byte) 0x36);
opad[i] = (byte) (key[i] ^ (byte) 0x5c);
i++;
}
while (i < 64) {
ipad[i] = (byte) 0x36;
opad[i] = (byte) 0x5c;
i++;
}
// Very important: update the digest with the ipad buffer
md5.reset();
md5.update(ipad);
}
/** Grab the current digest. This is the "answer". */
byte[] getOutput() {
final byte[] digest = md5.digest();
md5.update(opad);
return md5.digest(digest);
}
/** Update by adding a complete array */
void update(final byte[] input) {
md5.update(input);
}
}
/**
* Creates the first message (type 1 message) in the NTLM authentication
* sequence. This message includes the user name, domain and host for the
* authentication session.
*
* @return String the message to add to the HTTP request header.
*/
public String generateType1Msg() {
return TYPE_1_MESSAGE;
}
public String generateType3Msg(final String username, final String password, final String domain, final String workstation,
final String challenge) throws NtlmEngineException {
final Type2Message t2m = new Type2Message(challenge);
return getType3Message(username, password, workstation, domain, t2m.getChallenge(), t2m.getFlags(), t2m.getTarget(),
t2m.getTargetInfo());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy