org.bardframework.time.ZonedDateTimeJalali Maven / Gradle / Ivy
package org.bardframework.time;
import org.bardframework.time.zone.ZoneOffsetTransition;
import org.bardframework.time.zone.ZoneRules;
import org.bardframework.time.zone.ZoneUtils;
import java.io.Serializable;
import java.time.*;
import java.time.chrono.ChronoZonedDateTime;
import java.time.format.DateTimeFormatter;
import java.time.format.DateTimeParseException;
import java.time.temporal.*;
import java.util.List;
import java.util.Objects;
import static java.time.temporal.ChronoField.*;
/**
* A date-time with a time-zone in the ISO-8601 calendar system,
* such as {@code 1367-08-12T10:15:30+03:30 Europe/Paris}.
*
* {@code ZonedDateTime} is an immutable representation of a date-time with a time-zone.
* This class stores all date and time fields, to a precision of nanoseconds,
* and a time-zone, with a zone offset used to handle ambiguous local date-times.
* For example, the value
* "2nd October 2007 at 13:45.30.123456789 +02:00 in the Europe/Paris time-zone"
* can be stored in a {@code ZonedDateTime}.
*
* This class handles conversion from the local time-line of {@code LocalDateTimeJalali}
* to the instant time-line of {@code Instant}.
* The difference between the two time-lines is the offset from UTC/Greenwich,
* represented by a {@code ZoneOffset}.
*
* Converting between the two time-lines involves calculating the offset using the
* {@link ZoneRules rules} accessed from the {@code ZoneId}.
* Obtaining the offset for an instant is simple, as there is exactly one valid
* offset for each instant. By contrast, obtaining the offset for a local date-time
* is not straightforward. There are three cases:
*
* - Normal, with one valid offset. For the vast majority of the year, the normal
* case applies, where there is a single valid offset for the local date-time.
* - Gap, with zero valid offsets. This is when clocks jump forward typically
* due to the spring daylight savings change from "winter" to "summer".
* In a gap there are local date-time values with no valid offset.
* - Overlap, with two valid offsets. This is when clocks are set back typically
* due to the autumn daylight savings change from "summer" to "winter".
* In an overlap there are local date-time values with two valid offsets.
*
*
* Any method that converts directly or implicitly from a local date-time to an
* instant by obtaining the offset has the potential to be complicated.
*
* For Gaps, the general strategy is that if the local date-time falls in the
* middle of a Gap, then the resulting zoned date-time will have a local date-time
* shifted forwards by the length of the Gap, resulting in a date-time in the later
* offset, typically "summer" time.
*
* For Overlaps, the general strategy is that if the local date-time falls in the
* middle of an Overlap, then the previous offset will be retained. If there is no
* previous offset, or the previous offset is invalid, then the earlier offset is
* used, typically "summer" time.. Two additional methods,
* {@link #withEarlierOffsetAtOverlap()} and {@link #withLaterOffsetAtOverlap()},
* help manage the case of an overlap.
*
* In terms of design, this class should be viewed primarily as the combination
* of a {@code LocalDateTimeJalali} and a {@code ZoneId}. The {@code ZoneOffset} is
* a vital, but secondary, piece of information, used to ensure that the class
* represents an instant, especially during a daylight savings overlap.
*
*
* This is a value-based
* class; use of identity-sensitive operations (including reference equality
* ({@code ==}), identity hash code, or synchronization) on instances of
* {@code ZonedDateTime} may have unpredictable results and should be avoided.
* The {@code equals} method should be used for comparisons.
*
* A {@code ZonedDateTime} holds state equivalent to three separate objects,
* a {@code LocalDateTimeJalali}, a {@code ZoneId} and the resolved {@code ZoneOffset}.
* The offset and local date-time are used to define an instant when necessary.
* The zone ID is used to obtain the rules for how and when the offset changes.
* The offset cannot be freely set, as the zone controls which offsets are valid.
*
* This class is immutable and thread-safe.
*/
public final class ZonedDateTimeJalali
implements Temporal, ChronoZonedDateTime, Serializable {
/**
* Serialization version.
*/
private static final long serialVersionUID = -6260982410461394882L;
/**
* The local date-time.
*/
private final LocalDateTimeJalali dateTime;
/**
* The offset from UTC/Greenwich.
*/
private final ZoneOffset offset;
/**
* The time-zone.
*/
private final ZoneId zone;
//-----------------------------------------------------------------------
/**
* Constructor.
*
* @param dateTime the date-time, validated as not null
* @param offset the zone offset, validated as not null
* @param zone the time-zone, validated as not null
*/
private ZonedDateTimeJalali(LocalDateTimeJalali dateTime, ZoneOffset offset, ZoneId zone) {
this.dateTime = dateTime;
this.offset = offset;
this.zone = zone;
}
/**
* Obtains the current date-time from the system clock in the default time-zone.
*
* This will query the {@link Clock#systemDefaultZone() system clock} in the default
* time-zone to obtain the current date-time.
* The zone and offset will be set based on the time-zone in the clock.
*
* Using this method will prevent the ability to use an alternate clock for testing
* because the clock is hard-coded.
*
* @return the current date-time using the system clock, not null
*/
public static ZonedDateTimeJalali now() {
return now(Clock.systemDefaultZone());
}
/**
* Obtains the current date-time from the system clock in the specified time-zone.
*
* This will query the {@link Clock#system(ZoneId) system clock} to obtain the current date-time.
* Specifying the time-zone avoids dependence on the default time-zone.
* The offset will be calculated from the specified time-zone.
*
* Using this method will prevent the ability to use an alternate clock for testing
* because the clock is hard-coded.
*
* @param zone the zone ID to use, not null
* @return the current date-time using the system clock, not null
*/
public static ZonedDateTimeJalali now(ZoneId zone) {
return now(Clock.system(zone));
}
//-----------------------------------------------------------------------
/**
* Obtains the current date-time from the specified clock.
*
* This will query the specified clock to obtain the current date-time.
* The zone and offset will be set based on the time-zone in the clock.
*
* Using this method allows the use of an alternate clock for testing.
* The alternate clock may be introduced using {@link Clock dependency injection}.
*
* @param clock the clock to use, not null
* @return the current date-time, not null
*/
public static ZonedDateTimeJalali now(Clock clock) {
Objects.requireNonNull(clock, "clock");
final Instant now = clock.instant(); // called once
return ofInstant(now, clock.getZone());
}
/**
* Obtains an instance of {@code ZonedDateTime} from a local date and time.
*
* This creates a zoned date-time matching the input local date and time as closely as possible.
* Time-zone rules, such as daylight savings, mean that not every local date-time
* is valid for the specified zone, thus the local date-time may be adjusted.
*
* The local date time and first combined to form a local date-time.
* The local date-time is then resolved to a single instant on the time-line.
* This is achieved by finding a valid offset from UTC/Greenwich for the local
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
*
* In most cases, there is only one valid offset for a local date-time.
* In the case of an overlap, when clocks are set back, there are two valid offsets.
* This method uses the earlier offset typically corresponding to "summer".
*
* In the case of a gap, when clocks jump forward, there is no valid offset.
* Instead, the local date-time is adjusted to be later by the length of the gap.
* For a typical one hour daylight savings change, the local date-time will be
* moved one hour later into the offset typically corresponding to "summer".
*
* @param date the local date, not null
* @param time the local time, not null
* @param zone the time-zone, not null
* @return the offset date-time, not null
*/
public static ZonedDateTimeJalali of(LocalDateJalali date, LocalTime time, ZoneId zone) {
return of(LocalDateTimeJalali.of(date, time), zone);
}
/**
* Obtains an instance of {@code ZonedDateTime} from a local date-time.
*
* This creates a zoned date-time matching the input local date-time as closely as possible.
* Time-zone rules, such as daylight savings, mean that not every local date-time
* is valid for the specified zone, thus the local date-time may be adjusted.
*
* The local date-time is resolved to a single instant on the time-line.
* This is achieved by finding a valid offset from UTC/Greenwich for the local
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
*
* In most cases, there is only one valid offset for a local date-time.
* In the case of an overlap, when clocks are set back, there are two valid offsets.
* This method uses the earlier offset typically corresponding to "summer".
*
* In the case of a gap, when clocks jump forward, there is no valid offset.
* Instead, the local date-time is adjusted to be later by the length of the gap.
* For a typical one hour daylight savings change, the local date-time will be
* moved one hour later into the offset typically corresponding to "summer".
*
* @param localDateTime the local date-time, not null
* @param zone the time-zone, not null
* @return the zoned date-time, not null
*/
public static ZonedDateTimeJalali of(LocalDateTimeJalali localDateTime, ZoneId zone) {
return ofLocal(localDateTime, zone, null);
}
/**
* Obtains an instance of {@code ZonedDateTime} from a year, month, day,
* hour, minute, second, nanosecond and time-zone.
*
* This creates a zoned date-time matching the local date-time of the seven
* specified fields as closely as possible.
* Time-zone rules, such as daylight savings, mean that not every local date-time
* is valid for the specified zone, thus the local date-time may be adjusted.
*
* The local date-time is resolved to a single instant on the time-line.
* This is achieved by finding a valid offset from UTC/Greenwich for the local
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
*
* In most cases, there is only one valid offset for a local date-time.
* In the case of an overlap, when clocks are set back, there are two valid offsets.
* This method uses the earlier offset typically corresponding to "summer".
*
* In the case of a gap, when clocks jump forward, there is no valid offset.
* Instead, the local date-time is adjusted to be later by the length of the gap.
* For a typical one hour daylight savings change, the local date-time will be
* moved one hour later into the offset typically corresponding to "summer".
*
* This method exists primarily for writing test cases.
* Non test-code will typically use other methods to create an offset time.
* {@code LocalDateTimeJalali} has five additional convenience variants of the
* equivalent factory method taking fewer arguments.
* They are not provided here to reduce the footprint of the API.
*
* @param year the year to represent, from MIN_YEAR to MAX_YEAR
* @param month the month-of-year to represent, from 1 (January) to 12 (December)
* @param dayOfMonth the day-of-month to represent, from 1 to 31
* @param hour the hour-of-day to represent, from 0 to 23
* @param minute the minute-of-hour to represent, from 0 to 59
* @param second the second-of-minute to represent, from 0 to 59
* @param nanoOfSecond the nano-of-second to represent, from 0 to 999,999,999
* @param zone the time-zone, not null
* @return the offset date-time, not null
* @throws DateTimeException if the value of any field is out of range, or
* if the day-of-month is invalid for the month-year
*/
public static ZonedDateTimeJalali of(
int year, int month, int dayOfMonth,
int hour, int minute, int second, int nanoOfSecond, ZoneId zone) {
LocalDateTimeJalali dt = LocalDateTimeJalali.of(year, month, dayOfMonth, hour, minute, second, nanoOfSecond);
return ofLocal(dt, zone, null);
}
//-----------------------------------------------------------------------
/**
* Obtains an instance of {@code ZonedDateTime} from a local date-time
* using the preferred offset if possible.
*
* The local date-time is resolved to a single instant on the time-line.
* This is achieved by finding a valid offset from UTC/Greenwich for the local
* date-time as defined by the {@link ZoneRules rules} of the zone ID.
*
* In most cases, there is only one valid offset for a local date-time.
* In the case of an overlap, where clocks are set back, there are two valid offsets.
* If the preferred offset is one of the valid offsets then it is used.
* Otherwise the earlier valid offset is used, typically corresponding to "summer".
*
* In the case of a gap, where clocks jump forward, there is no valid offset.
* Instead, the local date-time is adjusted to be later by the length of the gap.
* For a typical one hour daylight savings change, the local date-time will be
* moved one hour later into the offset typically corresponding to "summer".
*
* @param localDateTime the local date-time, not null
* @param zone the time-zone, not null
* @param preferredOffset the zone offset, null if no preference
* @return the zoned date-time, not null
*/
public static ZonedDateTimeJalali ofLocal(LocalDateTimeJalali localDateTime, ZoneId zone, ZoneOffset preferredOffset) {
Objects.requireNonNull(localDateTime, "localDateTime");
Objects.requireNonNull(zone, "zone");
if (zone instanceof ZoneOffset) {
return new ZonedDateTimeJalali(localDateTime, (ZoneOffset) zone, zone);
}
ZoneRules rules = ZoneUtils.getRules(zone);
List validOffsets = rules.getValidOffsets(localDateTime);
ZoneOffset offset;
if (validOffsets.size() == 1) {
offset = validOffsets.get(0);
} else if (validOffsets.size() == 0) {
ZoneOffsetTransition trans = rules.getTransition(localDateTime);
localDateTime = localDateTime.plusSeconds(Objects.requireNonNull(trans).getDuration().getSeconds());
offset = trans.getOffsetAfter();
} else {
if (preferredOffset != null && validOffsets.contains(preferredOffset)) {
offset = preferredOffset;
} else {
offset = Objects.requireNonNull(validOffsets.get(0), "offset"); // protect against bad ZoneRules
}
}
return new ZonedDateTimeJalali(localDateTime, offset, zone);
}
/**
* Obtains an instance of {@code ZonedDateTime} from an {@code Instant}.
*
* This creates a zoned date-time with the same instant as that specified.
* Calling {@link #toInstant()} will return an instant equal to the one used here.
*
* Converting an instant to a zoned date-time is simple as there is only one valid
* offset for each instant.
*
* @param instant the instant to create the date-time from, not null
* @param zone the time-zone, not null
* @return the zoned date-time, not null
* @throws DateTimeException if the result exceeds the supported range
*/
public static ZonedDateTimeJalali ofInstant(Instant instant, ZoneId zone) {
Objects.requireNonNull(instant, "instant");
Objects.requireNonNull(zone, "zone");
return create(instant.getEpochSecond(), instant.getNano(), zone);
}
/**
* Obtains an instance of {@code ZonedDateTime} from the instant formed by combining
* the local date-time and offset.
*
* This creates a zoned date-time by {@link LocalDateTimeJalali#toInstant(ZoneOffset) combining}
* the {@code LocalDateTimeJalali} and {@code ZoneOffset}.
* This combination uniquely specifies an instant without ambiguity.
*
* Converting an instant to a zoned date-time is simple as there is only one valid
* offset for each instant. If the valid offset is different to the offset specified,
* then the date-time and offset of the zoned date-time will differ from those specified.
*
* If the {@code ZoneId} to be used is a {@code ZoneOffset}, this method is equivalent
* to {@link #of(LocalDateTimeJalali, ZoneId)}.
*
* @param localDateTime the local date-time, not null
* @param offset the zone offset, not null
* @param zone the time-zone, not null
* @return the zoned date-time, not null
*/
public static ZonedDateTimeJalali ofInstant(LocalDateTimeJalali localDateTime, ZoneOffset offset, ZoneId zone) {
Objects.requireNonNull(localDateTime, "localDateTime");
Objects.requireNonNull(offset, "offset");
Objects.requireNonNull(zone, "zone");
if (ZoneUtils.getRules(zone).isValidOffset(localDateTime, offset)) {
return new ZonedDateTimeJalali(localDateTime, offset, zone);
}
return create(localDateTime.toEpochSecond(offset), localDateTime.getNano(), zone);
}
//-----------------------------------------------------------------------
/**
* Obtains an instance of {@code ZonedDateTime} using seconds from the
* epoch of 1970-01-01T00:00:00Z.
*
* @param epochSecond the number of seconds from the epoch of 1970-01-01T00:00:00Z
* @param nanoOfSecond the nanosecond within the second, from 0 to 999,999,999
* @param zone the time-zone, not null
* @return the zoned date-time, not null
* @throws DateTimeException if the result exceeds the supported range
*/
private static ZonedDateTimeJalali create(long epochSecond, int nanoOfSecond, ZoneId zone) {
ZoneRules rules = ZoneUtils.getRules(zone);
Instant instant = Instant.ofEpochSecond(epochSecond, nanoOfSecond); // TODO: rules should be queryable by epochSeconds
ZoneOffset offset = rules.getOffset(instant);
LocalDateTimeJalali ldt = LocalDateTimeJalali.ofEpochSecond(epochSecond, nanoOfSecond, offset);
return new ZonedDateTimeJalali(ldt, offset, zone);
}
/**
* Obtains an instance of {@code ZonedDateTime} strictly validating the
* combination of local date-time, offset and zone ID.
*
* This creates a zoned date-time ensuring that the offset is valid for the
* local date-time according to the rules of the specified zone.
* If the offset is invalid, an exception is thrown.
*
* @param localDateTime the local date-time, not null
* @param offset the zone offset, not null
* @param zone the time-zone, not null
* @return the zoned date-time, not null
* @throws DateTimeException if the combination of arguments is invalid
*/
public static ZonedDateTimeJalali ofStrict(LocalDateTimeJalali localDateTime, ZoneOffset offset, ZoneId zone) {
Objects.requireNonNull(localDateTime, "localDateTime");
Objects.requireNonNull(offset, "offset");
Objects.requireNonNull(zone, "zone");
ZoneRules rules = ZoneUtils.getRules(zone);
if (!rules.isValidOffset(localDateTime, offset)) {
ZoneOffsetTransition trans = rules.getTransition(localDateTime);
if (trans != null && trans.isGap()) {
// error message says daylight savings for simplicity
// even though there are other kinds of gaps
throw new DateTimeException("LocalDateTimeJalali '" + localDateTime +
"' does not exist in zone '" + zone +
"' due to a gap in the local time-line, typically caused by daylight savings");
}
throw new DateTimeException("ZoneOffset '" + offset + "' is not valid for LocalDateTimeJalali '" +
localDateTime + "' in zone '" + zone + "'");
}
return new ZonedDateTimeJalali(localDateTime, offset, zone);
}
//-----------------------------------------------------------------------
/**
* Obtains an instance of {@code ZonedDateTime} leniently, for advanced use cases,
* allowing any combination of local date-time, offset and zone ID.
*
* This creates a zoned date-time with no checks other than no nulls.
* This means that the resulting zoned date-time may have an offset that is in conflict
* with the zone ID.
*
* This method is intended for advanced use cases.
* For example, consider the case where a zoned date-time with valid fields is created
* and then stored in a database or serialization-based store. At some later point,
* the object is then re-loaded. However, between those points in time, the government
* that defined the time-zone has changed the rules, such that the originally stored
* local date-time now does not occur. This method can be used to create the object
* in an "invalid" state, despite the change in rules.
*
* @param localDateTime the local date-time, not null
* @param offset the zone offset, not null
* @param zone the time-zone, not null
* @return the zoned date-time, not null
*/
private static ZonedDateTimeJalali ofLenient(LocalDateTimeJalali localDateTime, ZoneOffset offset, ZoneId zone) {
Objects.requireNonNull(localDateTime, "localDateTime");
Objects.requireNonNull(offset, "offset");
Objects.requireNonNull(zone, "zone");
if (zone instanceof ZoneOffset && !offset.equals(zone)) {
throw new IllegalArgumentException("ZoneId must match ZoneOffset");
}
return new ZonedDateTimeJalali(localDateTime, offset, zone);
}
//-----------------------------------------------------------------------
/**
* Obtains an instance of {@code ZonedDateTime} from a temporal object.
*
* This obtains a zoned date-time based on the specified temporal.
* A {@code TemporalAccessor} represents an arbitrary set of date and time information,
* which this factory converts to an instance of {@code ZonedDateTime}.
*
* The conversion will first obtain a {@code ZoneId} from the temporal object,
* falling back to a {@code ZoneOffset} if necessary. It will then try to obtain
* an {@code Instant}, falling back to a {@code LocalDateTimeJalali} if necessary.
* The result will be either the combination of {@code ZoneId} or {@code ZoneOffset}
* with {@code Instant} or {@code LocalDateTimeJalali}.
* Implementations are permitted to perform optimizations such as accessing
* those fields that are equivalent to the relevant objects.
*
* This method matches the signature of the functional interface {@link TemporalQuery}
* allowing it to be used as a query via method reference, {@code ZonedDateTime::from}.
*
* @param temporal the temporal object to convert, not null
* @return the zoned date-time, not null
* @throws DateTimeException if unable to convert to an {@code ZonedDateTime}
*/
public static ZonedDateTimeJalali from(TemporalAccessor temporal) {
if (temporal instanceof ZonedDateTimeJalali) {
return (ZonedDateTimeJalali) temporal;
}
try {
ZoneId zone = ZoneId.from(temporal);
if (temporal.isSupported(INSTANT_SECONDS)) {
long epochSecond = temporal.getLong(INSTANT_SECONDS);
int nanoOfSecond = temporal.get(NANO_OF_SECOND);
return create(epochSecond, nanoOfSecond, zone);
} else {
LocalDateJalali date = LocalDateJalali.from(temporal);
LocalTime time = LocalTime.from(temporal);
return of(date, time, zone);
}
} catch (DateTimeException ex) {
throw new DateTimeException("Unable to obtain ZonedDateTime from TemporalAccessor: " +
temporal + " of type " + temporal.getClass().getName(), ex);
}
}
/**
* Obtains an instance of {@code ZonedDateTime} from a text string such as
* {@code 1367-08-12T10:15:30+03:30[Asia/Tehran]}.
*
* The string must represent a valid date-time and is parsed using
* {@link DateTimeFormatter#ISO_ZONED_DATE_TIME}.
*
* @param text the text to parse such as "1367-08-12T10:15:30+03:30[Asia/Tehran]", not null
* @return the parsed zoned date-time, not null
* @throws DateTimeParseException if the text cannot be parsed
*/
public static ZonedDateTimeJalali parse(CharSequence text) {
return parse(text, DateTimeFormatter.ISO_ZONED_DATE_TIME);
}
//-----------------------------------------------------------------------
/**
* Obtains an instance of {@code ZonedDateTime} from a text string using a specific formatter.
*
* The text is parsed using the formatter, returning a date-time.
*
* @param text the text to parse, not null
* @param formatter the formatter to use, not null
* @return the parsed zoned date-time, not null
* @throws DateTimeParseException if the text cannot be parsed
*/
public static ZonedDateTimeJalali parse(CharSequence text, DateTimeFormatter formatter) {
Objects.requireNonNull(formatter, "formatter");
return formatter.parse(text, ZonedDateTimeJalali::from);
}
/**
* Resolves the new local date-time using this zone ID, retaining the offset if possible.
*
* @param newDateTime the new local date-time, not null
* @return the zoned date-time, not null
*/
private ZonedDateTimeJalali resolveLocal(LocalDateTimeJalali newDateTime) {
return ofLocal(newDateTime, zone, offset);
}
/**
* Resolves the new local date-time using the offset to identify the instant.
*
* @param newDateTime the new local date-time, not null
* @return the zoned date-time, not null
*/
private ZonedDateTimeJalali resolveInstant(LocalDateTimeJalali newDateTime) {
return ofInstant(newDateTime, offset, zone);
}
/**
* Resolves the offset into this zoned date-time for the with methods.
*
* This typically ignores the offset, unless it can be used to switch offset in a DST overlap.
*
* @param offset the offset, not null
* @return the zoned date-time, not null
*/
private ZonedDateTimeJalali resolveOffset(ZoneOffset offset) {
if (!offset.equals(this.offset) && ZoneUtils.getRules(zone).isValidOffset(dateTime, offset)) {
return new ZonedDateTimeJalali(dateTime, offset, zone);
}
return this;
}
//-----------------------------------------------------------------------
/**
* Checks if the specified field is supported.
*
* This checks if this date-time can be queried for the specified field.
* If false, then calling the {@link #range(TemporalField) range},
* {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
* methods will throw an exception.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The supported fields are:
*
* - {@code NANO_OF_SECOND}
*
- {@code NANO_OF_DAY}
*
- {@code MICRO_OF_SECOND}
*
- {@code MICRO_OF_DAY}
*
- {@code MILLI_OF_SECOND}
*
- {@code MILLI_OF_DAY}
*
- {@code SECOND_OF_MINUTE}
*
- {@code SECOND_OF_DAY}
*
- {@code MINUTE_OF_HOUR}
*
- {@code MINUTE_OF_DAY}
*
- {@code HOUR_OF_AMPM}
*
- {@code CLOCK_HOUR_OF_AMPM}
*
- {@code HOUR_OF_DAY}
*
- {@code CLOCK_HOUR_OF_DAY}
*
- {@code AMPM_OF_DAY}
*
- {@code DAY_OF_WEEK}
*
- {@code ALIGNED_DAY_OF_WEEK_IN_MONTH}
*
- {@code ALIGNED_DAY_OF_WEEK_IN_YEAR}
*
- {@code DAY_OF_MONTH}
*
- {@code DAY_OF_YEAR}
*
- {@code EPOCH_DAY}
*
- {@code ALIGNED_WEEK_OF_MONTH}
*
- {@code ALIGNED_WEEK_OF_YEAR}
*
- {@code MONTH_OF_YEAR}
*
- {@code PROLEPTIC_MONTH}
*
- {@code YEAR_OF_ERA}
*
- {@code YEAR}
*
- {@code ERA}
*
- {@code INSTANT_SECONDS}
*
- {@code OFFSET_SECONDS}
*
* All other {@code ChronoField} instances will return false.
*
* If the field is not a {@code ChronoField}, then the result of this method
* is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
* passing {@code this} as the argument.
* Whether the field is supported is determined by the field.
*
* @param field the field to check, null returns false
* @return true if the field is supported on this date-time, false if not
*/
@Override
public boolean isSupported(TemporalField field) {
return field instanceof ChronoField || (field != null && field.isSupportedBy(this));
}
/**
* Checks if the specified unit is supported.
*
* This checks if the specified unit can be added to, or subtracted from, this date-time.
* If false, then calling the {@link #plus(long, TemporalUnit)} and
* {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
*
* If the unit is a {@link ChronoUnit} then the query is implemented here.
* The supported units are:
*
* - {@code NANOS}
*
- {@code MICROS}
*
- {@code MILLIS}
*
- {@code SECONDS}
*
- {@code MINUTES}
*
- {@code HOURS}
*
- {@code HALF_DAYS}
*
- {@code DAYS}
*
- {@code WEEKS}
*
- {@code MONTHS}
*
- {@code YEARS}
*
- {@code DECADES}
*
- {@code CENTURIES}
*
- {@code MILLENNIA}
*
- {@code ERAS}
*
* All other {@code ChronoUnit} instances will return false.
*
* If the unit is not a {@code ChronoUnit}, then the result of this method
* is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
* passing {@code this} as the argument.
* Whether the unit is supported is determined by the unit.
*
* @param unit the unit to check, null returns false
* @return true if the unit can be added/subtracted, false if not
*/
@Override // override for Javadoc
public boolean isSupported(TemporalUnit unit) {
return ChronoZonedDateTime.super.isSupported(unit);
}
//-----------------------------------------------------------------------
/**
* Gets the range of valid values for the specified field.
*
* The range object expresses the minimum and maximum valid values for a field.
* This date-time is used to enhance the accuracy of the returned range.
* If it is not possible to return the range, because the field is not supported
* or for some other reason, an exception is thrown.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The {@link #isSupported(TemporalField) supported fields} will return
* appropriate range instances.
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
*
* If the field is not a {@code ChronoField}, then the result of this method
* is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
* passing {@code this} as the argument.
* Whether the range can be obtained is determined by the field.
*
* @param field the field to query the range for, not null
* @return the range of valid values for the field, not null
* @throws DateTimeException if the range for the field cannot be obtained
* @throws UnsupportedTemporalTypeException if the field is not supported
*/
@Override
public ValueRange range(TemporalField field) {
if (field instanceof ChronoField) {
if (field == INSTANT_SECONDS || field == OFFSET_SECONDS) {
return field.range();
}
return dateTime.range(field);
}
return field.rangeRefinedBy(this);
}
/**
* Gets the value of the specified field from this date-time as an {@code int}.
*
* This queries this date-time for the value of the specified field.
* The returned value will always be within the valid range of values for the field.
* If it is not possible to return the value, because the field is not supported
* or for some other reason, an exception is thrown.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The {@link #isSupported(TemporalField) supported fields} will return valid
* values based on this date-time, except {@code NANO_OF_DAY}, {@code MICRO_OF_DAY},
* {@code EPOCH_DAY}, {@code PROLEPTIC_MONTH} and {@code INSTANT_SECONDS} which are too
* large to fit in an {@code int} and throw an {@code UnsupportedTemporalTypeException}.
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
*
* If the field is not a {@code ChronoField}, then the result of this method
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
* passing {@code this} as the argument. Whether the value can be obtained,
* and what the value represents, is determined by the field.
*
* @param field the field to get, not null
* @return the value for the field
* @throws DateTimeException if a value for the field cannot be obtained or
* the value is outside the range of valid values for the field
* @throws UnsupportedTemporalTypeException if the field is not supported or
* the range of values exceeds an {@code int}
* @throws ArithmeticException if numeric overflow occurs
*/
@Override // override for Javadoc and performance
public int get(TemporalField field) {
if (field instanceof ChronoField) {
switch ((ChronoField) field) {
case INSTANT_SECONDS:
throw new UnsupportedTemporalTypeException("Invalid field 'InstantSeconds' for get() method, use getLong() instead");
case OFFSET_SECONDS:
return getOffset().getTotalSeconds();
}
return dateTime.get(field);
}
return ChronoZonedDateTime.super.get(field);
}
/**
* Gets the value of the specified field from this date-time as a {@code long}.
*
* This queries this date-time for the value of the specified field.
* If it is not possible to return the value, because the field is not supported
* or for some other reason, an exception is thrown.
*
* If the field is a {@link ChronoField} then the query is implemented here.
* The {@link #isSupported(TemporalField) supported fields} will return valid
* values based on this date-time.
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
*
* If the field is not a {@code ChronoField}, then the result of this method
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
* passing {@code this} as the argument. Whether the value can be obtained,
* and what the value represents, is determined by the field.
*
* @param field the field to get, not null
* @return the value for the field
* @throws DateTimeException if a value for the field cannot be obtained
* @throws UnsupportedTemporalTypeException if the field is not supported
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public long getLong(TemporalField field) {
if (field instanceof ChronoField) {
switch ((ChronoField) field) {
case INSTANT_SECONDS:
return toEpochSecond();
case OFFSET_SECONDS:
return getOffset().getTotalSeconds();
}
return dateTime.getLong(field);
}
return field.getFrom(this);
}
//-----------------------------------------------------------------------
/**
* Gets the zone offset, such as '+01:00'.
*
* This is the offset of the local date-time from UTC/Greenwich.
*
* @return the zone offset, not null
*/
@Override
public ZoneOffset getOffset() {
return offset;
}
/**
* Returns a copy of this date-time changing the zone offset to the
* earlier of the two valid offsets at a local time-line overlap.
*
* This method only has any effect when the local time-line overlaps, such as
* at an autumn daylight savings cutover. In this scenario, there are two
* valid offsets for the local date-time. Calling this method will return
* a zoned date-time with the earlier of the two selected.
*
* If this method is called when it is not an overlap, {@code this}
* is returned.
*
* This instance is immutable and unaffected by this method call.
*
* @return a {@code ZonedDateTime} based on this date-time with the earlier offset, not null
*/
@Override
public ZonedDateTimeJalali withEarlierOffsetAtOverlap() {
ZoneOffsetTransition trans = ZoneUtils.getRules(getZone()).getTransition(dateTime);
if (trans != null && trans.isOverlap()) {
ZoneOffset earlierOffset = trans.getOffsetBefore();
if (!earlierOffset.equals(offset)) {
return new ZonedDateTimeJalali(dateTime, earlierOffset, zone);
}
}
return this;
}
/**
* Returns a copy of this date-time changing the zone offset to the
* later of the two valid offsets at a local time-line overlap.
*
* This method only has any effect when the local time-line overlaps, such as
* at an autumn daylight savings cutover. In this scenario, there are two
* valid offsets for the local date-time. Calling this method will return
* a zoned date-time with the later of the two selected.
*
* If this method is called when it is not an overlap, {@code this}
* is returned.
*
* This instance is immutable and unaffected by this method call.
*
* @return a {@code ZonedDateTime} based on this date-time with the later offset, not null
*/
@Override
public ZonedDateTimeJalali withLaterOffsetAtOverlap() {
ZoneOffsetTransition trans = ZoneUtils.getRules(zone).getTransition(toLocalDateTime());
if (trans != null) {
ZoneOffset laterOffset = trans.getOffsetAfter();
if (!laterOffset.equals(offset)) {
return new ZonedDateTimeJalali(dateTime, laterOffset, zone);
}
}
return this;
}
//-----------------------------------------------------------------------
/**
* Gets the time-zone, such as 'Europe/Paris'.
*
* This returns the zone ID. This identifies the time-zone {@link ZoneRules rules}
* that determine when and how the offset from UTC/Greenwich changes.
*
* The zone ID may be same as the {@linkplain #getOffset() offset}.
* If this is true, then any future calculations, such as addition or subtraction,
* have no complex edge cases due to time-zone rules.
* See also {@link #withFixedOffsetZone()}.
*
* @return the time-zone, not null
*/
@Override
public ZoneId getZone() {
return zone;
}
/**
* Returns a copy of this date-time with a different time-zone,
* retaining the local date-time if possible.
*
* This method changes the time-zone and retains the local date-time.
* The local date-time is only changed if it is invalid for the new zone,
* determined using the same approach as
* {@link #ofLocal(LocalDateTimeJalali, ZoneId, ZoneOffset)}.
*
* To change the zone and adjust the local date-time,
* use {@link #withZoneSameInstant(ZoneId)}.
*
* This instance is immutable and unaffected by this method call.
*
* @param zone the time-zone to change to, not null
* @return a {@code ZonedDateTime} based on this date-time with the requested zone, not null
*/
@Override
public ZonedDateTimeJalali withZoneSameLocal(ZoneId zone) {
Objects.requireNonNull(zone, "zone");
return this.zone.equals(zone) ? this : ofLocal(dateTime, zone, offset);
}
/**
* Returns a copy of this date-time with a different time-zone,
* retaining the instant.
*
* This method changes the time-zone and retains the instant.
* This normally results in a change to the local date-time.
*
* This method is based on retaining the same instant, thus gaps and overlaps
* in the local time-line have no effect on the result.
*
* To change the offset while keeping the local time,
* use {@link #withZoneSameLocal(ZoneId)}.
*
* @param zone the time-zone to change to, not null
* @return a {@code ZonedDateTime} based on this date-time with the requested zone, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
@Override
public ZonedDateTimeJalali withZoneSameInstant(ZoneId zone) {
Objects.requireNonNull(zone, "zone");
return this.zone.equals(zone) ? this :
create(dateTime.toEpochSecond(offset), dateTime.getNano(), zone);
}
/**
* Returns a copy of this date-time with the zone ID set to the offset.
*
* This returns a zoned date-time where the zone ID is the same as {@link #getOffset()}.
* The local date-time, offset and instant of the result will be the same as in this date-time.
*
* Setting the date-time to a fixed single offset means that any future
* calculations, such as addition or subtraction, have no complex edge cases
* due to time-zone rules.
* This might also be useful when sending a zoned date-time across a network,
* as most protocols, such as ISO-8601, only handle offsets,
* and not region-based zone IDs.
*
* This is equivalent to {@code ZonedDateTime.of(zdt.toLocalDateTimeJalali(), zdt.getOffset())}.
*
* @return a {@code ZonedDateTime} with the zone ID set to the offset, not null
*/
public ZonedDateTimeJalali withFixedOffsetZone() {
return this.zone.equals(offset) ? this : new ZonedDateTimeJalali(dateTime, offset, offset);
}
//-----------------------------------------------------------------------
/**
* Gets the {@code LocalDateTimeJalali} part of this date-time.
*
* This returns a {@code LocalDateTimeJalali} with the same year, month, day and time
* as this date-time.
*
* @return the local date-time part of this date-time, not null
*/
@Override // override for return type
public LocalDateTimeJalali toLocalDateTime() {
return dateTime;
}
//-----------------------------------------------------------------------
/**
* Gets the {@code LocalDateJalali} part of this date-time.
*
* This returns a {@code LocalDateJalali} with the same year, month and day
* as this date-time.
*
* @return the date part of this date-time, not null
*/
@Override // override for return type
public LocalDateJalali toLocalDate() {
return dateTime.toLocalDate();
}
/**
* Gets the year field.
*
* This method returns the primitive {@code int} value for the year.
*
* The year returned by this method is proleptic as per {@code get(YEAR)}.
* To obtain the year-of-era, use {@code get(YEAR_OF_ERA)}.
*
* @return the year, from MIN_YEAR to MAX_YEAR
*/
public int getYear() {
return dateTime.getYear();
}
/**
* Gets the month-of-year field from 1 to 12.
*
* This method returns the month as an {@code int} from 1 to 12.
* Application code is frequently clearer if the enum {@link Month}
* is used by calling {@link #getMonth()}.
*
* @return the month-of-year, from 1 to 12
* @see #getMonth()
*/
public int getMonthValue() {
return dateTime.getMonthValue();
}
/**
* Gets the month-of-year field using the {@code Month} enum.
*
* This method returns the enum {@link Month} for the month.
* This avoids confusion as to what {@code int} values mean.
* If you need access to the primitive {@code int} value then the enum
* provides the {@link Month#getValue() int value}.
*
* @return the month-of-year, not null
* @see #getMonthValue()
*/
public MonthJalali getMonth() {
return dateTime.getMonth();
}
/**
* Gets the day-of-month field.
*
* This method returns the primitive {@code int} value for the day-of-month.
*
* @return the day-of-month, from 1 to 31
*/
public int getDayOfMonth() {
return dateTime.getDayOfMonth();
}
/**
* Gets the day-of-year field.
*
* This method returns the primitive {@code int} value for the day-of-year.
*
* @return the day-of-year, from 1 to 365, or 366 in a leap year
*/
public int getDayOfYear() {
return dateTime.getDayOfYear();
}
/**
* Gets the day-of-week field, which is an enum {@code DayOfWeek}.
*
* This method returns the enum {@link DayOfWeek} for the day-of-week.
* This avoids confusion as to what {@code int} values mean.
* If you need access to the primitive {@code int} value then the enum
* provides the {@link DayOfWeek#getValue() int value}.
*
* Additional information can be obtained from the {@code DayOfWeek}.
* This includes textual names of the values.
*
* @return the day-of-week, not null
*/
public DayOfWeek getDayOfWeek() {
return dateTime.getDayOfWeek();
}
//-----------------------------------------------------------------------
/**
* Gets the {@code LocalTime} part of this date-time.
*
* This returns a {@code LocalTime} with the same hour, minute, second and
* nanosecond as this date-time.
*
* @return the time part of this date-time, not null
*/
@Override // override for Javadoc and performance
public LocalTime toLocalTime() {
return dateTime.toLocalTime();
}
/**
* Gets the hour-of-day field.
*
* @return the hour-of-day, from 0 to 23
*/
public int getHour() {
return dateTime.getHour();
}
/**
* Gets the minute-of-hour field.
*
* @return the minute-of-hour, from 0 to 59
*/
public int getMinute() {
return dateTime.getMinute();
}
/**
* Gets the second-of-minute field.
*
* @return the second-of-minute, from 0 to 59
*/
public int getSecond() {
return dateTime.getSecond();
}
/**
* Gets the nano-of-second field.
*
* @return the nano-of-second, from 0 to 999,999,999
*/
public int getNano() {
return dateTime.getNano();
}
//-----------------------------------------------------------------------
/**
* Returns an adjusted copy of this date-time.
*
* This returns a {@code ZonedDateTime}, based on this one, with the date-time adjusted.
* The adjustment takes place using the specified adjuster strategy object.
* Read the documentation of the adjuster to understand what adjustment will be made.
*
* A simple adjuster might simply set the one of the fields, such as the year field.
* A more complex adjuster might set the date to the last day of the month.
* A selection of common adjustments is provided in
* {@link TemporalAdjusters TemporalAdjusters}.
* These include finding the "last day of the month" and "next Wednesday".
* Key date-time classes also implement the {@code TemporalAdjuster} interface,
* such as {@link Month} and {@link MonthDay MonthDay}.
* The adjuster is responsible for handling special cases, such as the varying
* lengths of month and leap years.
*
* For example this code returns a date on the last day of July:
*
* import static java.time.Month.*;
* import static java.time.temporal.TemporalAdjusters.*;
*
* result = zonedDateTime.with(JULY).with(lastDayOfMonth());
*
*
* The classes {@link LocalDateJalali} and {@link LocalTime} implement {@code TemporalAdjuster},
* thus this method can be used to change the date, time or offset:
*
* result = zonedDateTime.with(date);
* result = zonedDateTime.with(time);
*
*
* {@link ZoneOffset} also implements {@code TemporalAdjuster} however using it
* as an argument typically has no effect. The offset of a {@code ZonedDateTime} is
* controlled primarily by the time-zone. As such, changing the offset does not generally
* make sense, because there is only one valid offset for the local date-time and zone.
* If the zoned date-time is in a daylight savings overlap, then the offset is used
* to switch between the two valid offsets. In all other cases, the offset is ignored.
*
* The result of this method is obtained by invoking the
* {@link TemporalAdjuster#adjustInto(Temporal)} method on the
* specified adjuster passing {@code this} as the argument.
*
* This instance is immutable and unaffected by this method call.
*
* @param adjuster the adjuster to use, not null
* @return a {@code ZonedDateTime} based on {@code this} with the adjustment made, not null
* @throws DateTimeException if the adjustment cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public ZonedDateTimeJalali with(TemporalAdjuster adjuster) {
// optimizations
if (adjuster instanceof LocalDateJalali) {
return resolveLocal(LocalDateTimeJalali.of((LocalDateJalali) adjuster, dateTime.toLocalTime()));
} else if (adjuster instanceof LocalTime) {
return resolveLocal(LocalDateTimeJalali.of(dateTime.toLocalDate(), (LocalTime) adjuster));
} else if (adjuster instanceof LocalDateTimeJalali) {
return resolveLocal((LocalDateTimeJalali) adjuster);
} else if (adjuster instanceof OffsetDateTimeJalali) {
OffsetDateTimeJalali odt = (OffsetDateTimeJalali) adjuster;
return ofLocal(odt.toLocalDateTimeJalali(), zone, odt.getOffset());
} else if (adjuster instanceof Instant) {
Instant instant = (Instant) adjuster;
return create(instant.getEpochSecond(), instant.getNano(), zone);
} else if (adjuster instanceof ZoneOffset) {
return resolveOffset((ZoneOffset) adjuster);
}
return (ZonedDateTimeJalali) adjuster.adjustInto(this);
}
/**
* Returns a copy of this date-time with the specified field set to a new value.
*
* This returns a {@code ZonedDateTime}, based on this one, with the value
* for the specified field changed.
* This can be used to change any supported field, such as the year, month or day-of-month.
* If it is not possible to set the value, because the field is not supported or for
* some other reason, an exception is thrown.
*
* In some cases, changing the specified field can cause the resulting date-time to become invalid,
* such as changing the month from 31st January to February would make the day-of-month invalid.
* In cases like this, the field is responsible for resolving the date. Typically it will choose
* the previous valid date, which would be the last valid day of February in this example.
*
* If the field is a {@link ChronoField} then the adjustment is implemented here.
*
* The {@code INSTANT_SECONDS} field will return a date-time with the specified instant.
* The zone and nano-of-second are unchanged.
* The result will have an offset derived from the new instant and original zone.
* If the new instant value is outside the valid range then a {@code DateTimeException} will be thrown.
*
* The {@code OFFSET_SECONDS} field will typically be ignored.
* The offset of a {@code ZonedDateTime} is controlled primarily by the time-zone.
* As such, changing the offset does not generally make sense, because there is only
* one valid offset for the local date-time and zone.
* If the zoned date-time is in a daylight savings overlap, then the offset is used
* to switch between the two valid offsets. In all other cases, the offset is ignored.
* If the new offset value is outside the valid range then a {@code DateTimeException} will be thrown.
*
* The other {@link #isSupported(TemporalField) supported fields} will behave as per
* the matching method on {@link LocalDateTimeJalali#with(TemporalField, long) LocalDateTimeJalali}.
* The zone is not part of the calculation and will be unchanged.
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
*
* If the field is not a {@code ChronoField}, then the result of this method
* is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
* passing {@code this} as the argument. In this case, the field determines
* whether and how to adjust the instant.
*
* This instance is immutable and unaffected by this method call.
*
* @param field the field to set in the result, not null
* @param newValue the new value of the field in the result
* @return a {@code ZonedDateTime} based on {@code this} with the specified field set, not null
* @throws DateTimeException if the field cannot be set
* @throws UnsupportedTemporalTypeException if the field is not supported
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public ZonedDateTimeJalali with(TemporalField field, long newValue) {
if (field instanceof ChronoField) {
ChronoField f = (ChronoField) field;
switch (f) {
case INSTANT_SECONDS:
return create(newValue, getNano(), zone);
case OFFSET_SECONDS:
ZoneOffset offset = ZoneOffset.ofTotalSeconds(f.checkValidIntValue(newValue));
return resolveOffset(offset);
}
return resolveLocal(dateTime.with(field, newValue));
}
return field.adjustInto(this, newValue);
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@code ZonedDateTime} with the year altered.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#withYear(int) changing the year} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param year the year to set in the result, from MIN_YEAR to MAX_YEAR
* @return a {@code ZonedDateTime} based on this date-time with the requested year, not null
* @throws DateTimeException if the year value is invalid
*/
public ZonedDateTimeJalali withYear(int year) {
return resolveLocal(dateTime.withYear(year));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the month-of-year altered.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#withMonth(int) changing the month} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param month the month-of-year to set in the result, from 1 (January) to 12 (December)
* @return a {@code ZonedDateTime} based on this date-time with the requested month, not null
* @throws DateTimeException if the month-of-year value is invalid
*/
public ZonedDateTimeJalali withMonth(int month) {
return resolveLocal(dateTime.withMonth(month));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the day-of-month altered.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#withDayOfMonth(int) changing the day-of-month} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param dayOfMonth the day-of-month to set in the result, from 1 to 28-31
* @return a {@code ZonedDateTime} based on this date-time with the requested day, not null
* @throws DateTimeException if the day-of-month value is invalid,
* or if the day-of-month is invalid for the month-year
*/
public ZonedDateTimeJalali withDayOfMonth(int dayOfMonth) {
return resolveLocal(dateTime.withDayOfMonth(dayOfMonth));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the day-of-year altered.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#withDayOfYear(int) changing the day-of-year} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param dayOfYear the day-of-year to set in the result, from 1 to 365-366
* @return a {@code ZonedDateTime} based on this date with the requested day, not null
* @throws DateTimeException if the day-of-year value is invalid,
* or if the day-of-year is invalid for the year
*/
public ZonedDateTimeJalali withDayOfYear(int dayOfYear) {
return resolveLocal(dateTime.withDayOfYear(dayOfYear));
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@code ZonedDateTime} with the hour-of-day altered.
*
* This operates on the local time-line,
* {@linkplain LocalDateTimeJalali#withHour(int) changing the time} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param hour the hour-of-day to set in the result, from 0 to 23
* @return a {@code ZonedDateTime} based on this date-time with the requested hour, not null
* @throws DateTimeException if the hour value is invalid
*/
public ZonedDateTimeJalali withHour(int hour) {
return resolveLocal(dateTime.withHour(hour));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the minute-of-hour altered.
*
* This operates on the local time-line,
* {@linkplain LocalDateTimeJalali#withMinute(int) changing the time} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param minute the minute-of-hour to set in the result, from 0 to 59
* @return a {@code ZonedDateTime} based on this date-time with the requested minute, not null
* @throws DateTimeException if the minute value is invalid
*/
public ZonedDateTimeJalali withMinute(int minute) {
return resolveLocal(dateTime.withMinute(minute));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the second-of-minute altered.
*
* This operates on the local time-line,
* {@linkplain LocalDateTimeJalali#withSecond(int) changing the time} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param second the second-of-minute to set in the result, from 0 to 59
* @return a {@code ZonedDateTime} based on this date-time with the requested second, not null
* @throws DateTimeException if the second value is invalid
*/
public ZonedDateTimeJalali withSecond(int second) {
return resolveLocal(dateTime.withSecond(second));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the nano-of-second altered.
*
* This operates on the local time-line,
* {@linkplain LocalDateTimeJalali#withNano(int) changing the time} of the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param nanoOfSecond the nano-of-second to set in the result, from 0 to 999,999,999
* @return a {@code ZonedDateTime} based on this date-time with the requested nanosecond, not null
* @throws DateTimeException if the nano value is invalid
*/
public ZonedDateTimeJalali withNano(int nanoOfSecond) {
return resolveLocal(dateTime.withNano(nanoOfSecond));
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@code ZonedDateTime} with the time truncated.
*
* Truncation returns a copy of the original date-time with fields
* smaller than the specified unit set to zero.
* For example, truncating with the {@link ChronoUnit#MINUTES minutes} unit
* will set the second-of-minute and nano-of-second field to zero.
*
* The unit must have a {@linkplain TemporalUnit#getDuration() duration}
* that divides into the length of a standard day without remainder.
* This includes all supplied time units on {@link ChronoUnit} and
* {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#truncatedTo(TemporalUnit) truncating}
* the underlying local date-time. This is then converted back to a
* {@code ZonedDateTime}, using the zone ID to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param unit the unit to truncate to, not null
* @return a {@code ZonedDateTime} based on this date-time with the time truncated, not null
* @throws DateTimeException if unable to truncate
* @throws UnsupportedTemporalTypeException if the unit is not supported
*/
public ZonedDateTimeJalali truncatedTo(TemporalUnit unit) {
return resolveLocal(dateTime.truncatedTo(unit));
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this date-time with the specified amount added.
*
* This returns a {@code ZonedDateTime}, based on this one, with the specified amount added.
* The amount is typically {@link Period} or {@link Duration} but may be
* any other type implementing the {@link TemporalAmount} interface.
*
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
* to implement the addition in any way it wishes, however it typically
* calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully added.
*
* This instance is immutable and unaffected by this method call.
*
* @param amountToAdd the amount to add, not null
* @return a {@code ZonedDateTime} based on this date-time with the addition made, not null
* @throws DateTimeException if the addition cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public ZonedDateTimeJalali plus(TemporalAmount amountToAdd) {
if (amountToAdd instanceof Period) {
Period periodToAdd = (Period) amountToAdd;
return resolveLocal(dateTime.plus(periodToAdd));
}
Objects.requireNonNull(amountToAdd, "amountToAdd");
return (ZonedDateTimeJalali) amountToAdd.addTo(this);
}
/**
* Returns a copy of this date-time with the specified amount added.
*
* This returns a {@code ZonedDateTime}, based on this one, with the amount
* in terms of the unit added. If it is not possible to add the amount, because the
* unit is not supported or for some other reason, an exception is thrown.
*
* If the field is a {@link ChronoUnit} then the addition is implemented here.
* The zone is not part of the calculation and will be unchanged in the result.
* The calculation for date and time units differ.
*
* Date units operate on the local time-line.
* The period is first added to the local date-time, then converted back
* to a zoned date-time using the zone ID.
* The conversion uses {@link #ofLocal(LocalDateTimeJalali, ZoneId, ZoneOffset)}
* with the offset before the addition.
*
* Time units operate on the instant time-line.
* The period is first added to the local date-time, then converted back to
* a zoned date-time using the zone ID.
* The conversion uses {@link #ofInstant(LocalDateTimeJalali, ZoneOffset, ZoneId)}
* with the offset before the addition.
*
* If the field is not a {@code ChronoUnit}, then the result of this method
* is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
* passing {@code this} as the argument. In this case, the unit determines
* whether and how to perform the addition.
*
* This instance is immutable and unaffected by this method call.
*
* @param amountToAdd the amount of the unit to add to the result, may be negative
* @param unit the unit of the amount to add, not null
* @return a {@code ZonedDateTime} based on this date-time with the specified amount added, not null
* @throws DateTimeException if the addition cannot be made
* @throws UnsupportedTemporalTypeException if the unit is not supported
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public ZonedDateTimeJalali plus(long amountToAdd, TemporalUnit unit) {
if (unit instanceof ChronoUnit) {
if (unit.isDateBased()) {
return resolveLocal(dateTime.plus(amountToAdd, unit));
} else {
return resolveInstant(dateTime.plus(amountToAdd, unit));
}
}
return unit.addTo(this, amountToAdd);
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of years added.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#plusYears(long) adding years} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param years the years to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the years added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusYears(long years) {
return resolveLocal(dateTime.plusYears(years));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of months added.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#plusMonths(long) adding months} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param months the months to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the months added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusMonths(long months) {
return resolveLocal(dateTime.plusMonths(months));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of weeks added.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#plusWeeks(long) adding weeks} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param weeks the weeks to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the weeks added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusWeeks(long weeks) {
return resolveLocal(dateTime.plusWeeks(weeks));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of days added.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#plusDays(long) adding days} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param days the days to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the days added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusDays(long days) {
return resolveLocal(dateTime.plusDays(days));
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of hours added.
*
* This operates on the instant time-line, such that adding one hour will
* always be a duration of one hour later.
* This may cause the local date-time to change by an amount other than one hour.
* Note that this is a different approach to that used by days, months and years,
* thus adding one day is not the same as adding 24 hours.
*
* For example, consider a time-zone, such as 'Europe/Paris', where the
* Autumn DST cutover means that the local times 02:00 to 02:59 occur twice
* changing from offset +02:00 in summer to +01:00 in winter.
*
* - Adding one hour to 01:30+02:00 will result in 02:30+02:00
* (both in summer time)
*
- Adding one hour to 02:30+02:00 will result in 02:30+01:00
* (moving from summer to winter time)
*
- Adding one hour to 02:30+01:00 will result in 03:30+01:00
* (both in winter time)
*
- Adding three hours to 01:30+02:00 will result in 03:30+01:00
* (moving from summer to winter time)
*
*
* This instance is immutable and unaffected by this method call.
*
* @param hours the hours to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the hours added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusHours(long hours) {
return resolveInstant(dateTime.plusHours(hours));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of minutes added.
*
* This operates on the instant time-line, such that adding one minute will
* always be a duration of one minute later.
* This may cause the local date-time to change by an amount other than one minute.
* Note that this is a different approach to that used by days, months and years.
*
* This instance is immutable and unaffected by this method call.
*
* @param minutes the minutes to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the minutes added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusMinutes(long minutes) {
return resolveInstant(dateTime.plusMinutes(minutes));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of seconds added.
*
* This operates on the instant time-line, such that adding one second will
* always be a duration of one second later.
* This may cause the local date-time to change by an amount other than one second.
* Note that this is a different approach to that used by days, months and years.
*
* This instance is immutable and unaffected by this method call.
*
* @param seconds the seconds to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the seconds added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusSeconds(long seconds) {
return resolveInstant(dateTime.plusSeconds(seconds));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of nanoseconds added.
*
* This operates on the instant time-line, such that adding one nano will
* always be a duration of one nano later.
* This may cause the local date-time to change by an amount other than one nano.
* Note that this is a different approach to that used by days, months and years.
*
* This instance is immutable and unaffected by this method call.
*
* @param nanos the nanos to add, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the nanoseconds added, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali plusNanos(long nanos) {
return resolveInstant(dateTime.plusNanos(nanos));
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this date-time with the specified amount subtracted.
*
* This returns a {@code ZonedDateTime}, based on this one, with the specified amount subtracted.
* The amount is typically {@link Period} or {@link Duration} but may be
* any other type implementing the {@link TemporalAmount} interface.
*
* The calculation is delegated to the amount object by calling
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
* to implement the subtraction in any way it wishes, however it typically
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
* of the amount implementation to determine if it can be successfully subtracted.
*
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount to subtract, not null
* @return a {@code ZonedDateTime} based on this date-time with the subtraction made, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public ZonedDateTimeJalali minus(TemporalAmount amountToSubtract) {
if (amountToSubtract instanceof Period) {
Period periodToSubtract = (Period) amountToSubtract;
return resolveLocal(dateTime.minus(periodToSubtract));
}
Objects.requireNonNull(amountToSubtract, "amountToSubtract");
return (ZonedDateTimeJalali) amountToSubtract.subtractFrom(this);
}
/**
* Returns a copy of this date-time with the specified amount subtracted.
*
* This returns a {@code ZonedDateTime}, based on this one, with the amount
* in terms of the unit subtracted. If it is not possible to subtract the amount,
* because the unit is not supported or for some other reason, an exception is thrown.
*
* The calculation for date and time units differ.
*
* Date units operate on the local time-line.
* The period is first subtracted from the local date-time, then converted back
* to a zoned date-time using the zone ID.
* The conversion uses {@link #ofLocal(LocalDateTimeJalali, ZoneId, ZoneOffset)}
* with the offset before the subtraction.
*
* Time units operate on the instant time-line.
* The period is first subtracted from the local date-time, then converted back to
* a zoned date-time using the zone ID.
* The conversion uses {@link #ofInstant(LocalDateTimeJalali, ZoneOffset, ZoneId)}
* with the offset before the subtraction.
*
* This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
* See that method for a full description of how addition, and thus subtraction, works.
*
* This instance is immutable and unaffected by this method call.
*
* @param amountToSubtract the amount of the unit to subtract from the result, may be negative
* @param unit the unit of the amount to subtract, not null
* @return a {@code ZonedDateTime} based on this date-time with the specified amount subtracted, not null
* @throws DateTimeException if the subtraction cannot be made
* @throws UnsupportedTemporalTypeException if the unit is not supported
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public ZonedDateTimeJalali minus(long amountToSubtract, TemporalUnit unit) {
return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of years subtracted.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#minusYears(long) subtracting years} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param years the years to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the years subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusYears(long years) {
return (years == Long.MIN_VALUE ? plusYears(Long.MAX_VALUE).plusYears(1) : plusYears(-years));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of months subtracted.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#minusMonths(long) subtracting months} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param months the months to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the months subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusMonths(long months) {
return (months == Long.MIN_VALUE ? plusMonths(Long.MAX_VALUE).plusMonths(1) : plusMonths(-months));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of weeks subtracted.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#minusWeeks(long) subtracting weeks} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param weeks the weeks to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the weeks subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusWeeks(long weeks) {
return (weeks == Long.MIN_VALUE ? plusWeeks(Long.MAX_VALUE).plusWeeks(1) : plusWeeks(-weeks));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of days subtracted.
*
* This operates on the local time-line,
* {@link LocalDateTimeJalali#minusDays(long) subtracting days} to the local date-time.
* This is then converted back to a {@code ZonedDateTime}, using the zone ID
* to obtain the offset.
*
* When converting back to {@code ZonedDateTime}, if the local date-time is in an overlap,
* then the offset will be retained if possible, otherwise the earlier offset will be used.
* If in a gap, the local date-time will be adjusted forward by the length of the gap.
*
* This instance is immutable and unaffected by this method call.
*
* @param days the days to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the days subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusDays(long days) {
return (days == Long.MIN_VALUE ? plusDays(Long.MAX_VALUE).plusDays(1) : plusDays(-days));
}
//-----------------------------------------------------------------------
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of hours subtracted.
*
* This operates on the instant time-line, such that subtracting one hour will
* always be a duration of one hour earlier.
* This may cause the local date-time to change by an amount other than one hour.
* Note that this is a different approach to that used by days, months and years,
* thus subtracting one day is not the same as adding 24 hours.
*
* For example, consider a time-zone, such as 'Europe/Paris', where the
* Autumn DST cutover means that the local times 02:00 to 02:59 occur twice
* changing from offset +02:00 in summer to +01:00 in winter.
*
* - Subtracting one hour from 03:30+01:00 will result in 02:30+01:00
* (both in winter time)
*
- Subtracting one hour from 02:30+01:00 will result in 02:30+02:00
* (moving from winter to summer time)
*
- Subtracting one hour from 02:30+02:00 will result in 01:30+02:00
* (both in summer time)
*
- Subtracting three hours from 03:30+01:00 will result in 01:30+02:00
* (moving from winter to summer time)
*
*
* This instance is immutable and unaffected by this method call.
*
* @param hours the hours to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the hours subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusHours(long hours) {
return (hours == Long.MIN_VALUE ? plusHours(Long.MAX_VALUE).plusHours(1) : plusHours(-hours));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of minutes subtracted.
*
* This operates on the instant time-line, such that subtracting one minute will
* always be a duration of one minute earlier.
* This may cause the local date-time to change by an amount other than one minute.
* Note that this is a different approach to that used by days, months and years.
*
* This instance is immutable and unaffected by this method call.
*
* @param minutes the minutes to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the minutes subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusMinutes(long minutes) {
return (minutes == Long.MIN_VALUE ? plusMinutes(Long.MAX_VALUE).plusMinutes(1) : plusMinutes(-minutes));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of seconds subtracted.
*
* This operates on the instant time-line, such that subtracting one second will
* always be a duration of one second earlier.
* This may cause the local date-time to change by an amount other than one second.
* Note that this is a different approach to that used by days, months and years.
*
* This instance is immutable and unaffected by this method call.
*
* @param seconds the seconds to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the seconds subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusSeconds(long seconds) {
return (seconds == Long.MIN_VALUE ? plusSeconds(Long.MAX_VALUE).plusSeconds(1) : plusSeconds(-seconds));
}
/**
* Returns a copy of this {@code ZonedDateTime} with the specified number of nanoseconds subtracted.
*
* This operates on the instant time-line, such that subtracting one nano will
* always be a duration of one nano earlier.
* This may cause the local date-time to change by an amount other than one nano.
* Note that this is a different approach to that used by days, months and years.
*
* This instance is immutable and unaffected by this method call.
*
* @param nanos the nanos to subtract, may be negative
* @return a {@code ZonedDateTime} based on this date-time with the nanoseconds subtracted, not null
* @throws DateTimeException if the result exceeds the supported date range
*/
public ZonedDateTimeJalali minusNanos(long nanos) {
return (nanos == Long.MIN_VALUE ? plusNanos(Long.MAX_VALUE).plusNanos(1) : plusNanos(-nanos));
}
//-----------------------------------------------------------------------
/**
* Queries this date-time using the specified query.
*
* This queries this date-time using the specified query strategy object.
* The {@code TemporalQuery} object defines the logic to be used to
* obtain the result. Read the documentation of the query to understand
* what the result of this method will be.
*
* The result of this method is obtained by invoking the
* {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
* specified query passing {@code this} as the argument.
*
* @param the type of the result
* @param query the query to invoke, not null
* @return the query result, null may be returned (defined by the query)
* @throws DateTimeException if unable to query (defined by the query)
* @throws ArithmeticException if numeric overflow occurs (defined by the query)
*/
@SuppressWarnings("unchecked")
@Override // override for Javadoc
public R query(TemporalQuery query) {
if (query == TemporalQueries.localDate()) {
return (R) toLocalDate();
}
return ChronoZonedDateTime.super.query(query);
}
/**
* Calculates the amount of time until another date-time in terms of the specified unit.
*
* This calculates the amount of time between two {@code ZonedDateTime}
* objects in terms of a single {@code TemporalUnit}.
* The start and end points are {@code this} and the specified date-time.
* The result will be negative if the end is before the start.
* For example, the amount in days between two date-times can be calculated
* using {@code startDateTime.until(endDateTime, DAYS)}.
*
* The {@code Temporal} passed to this method is converted to a
* {@code ZonedDateTime} using {@link #from(TemporalAccessor)}.
* If the time-zone differs between the two zoned date-times, the specified
* end date-time is normalized to have the same zone as this date-time.
*
* The calculation returns a whole number, representing the number of
* complete units between the two date-times.
* For example, the amount in months between 2012-06-15T00:00Z and 2012-08-14T23:59Z
* will only be one month as it is one minute short of two months.
*
* There are two equivalent ways of using this method.
* The first is to invoke this method.
* The second is to use {@link TemporalUnit#between(Temporal, Temporal)}:
*
* // these two lines are equivalent
* amount = start.until(end, MONTHS);
* amount = MONTHS.between(start, end);
*
* The choice should be made based on which makes the code more readable.
*
* The calculation is implemented in this method for {@link ChronoUnit}.
* The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
* {@code MINUTES}, {@code HOURS} and {@code HALF_DAYS}, {@code DAYS},
* {@code WEEKS}, {@code MONTHS}, {@code YEARS}, {@code DECADES},
* {@code CENTURIES}, {@code MILLENNIA} and {@code ERAS} are supported.
* Other {@code ChronoUnit} values will throw an exception.
*
* The calculation for date and time units differ.
*
* Date units operate on the local time-line, using the local date-time.
* For example, the period from noon on day 1 to noon the following day
* in days will always be counted as exactly one day, irrespective of whether
* there was a daylight savings change or not.
*
* Time units operate on the instant time-line.
* The calculation effectively converts both zoned date-times to instants
* and then calculates the period between the instants.
* For example, the period from noon on day 1 to noon the following day
* in hours may be 23, 24 or 25 hours (or some other amount) depending on
* whether there was a daylight savings change or not.
*
* If the unit is not a {@code ChronoUnit}, then the result of this method
* is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
* passing {@code this} as the first argument and the converted input temporal
* as the second argument.
*
* This instance is immutable and unaffected by this method call.
*
* @param endExclusive the end date, exclusive, which is converted to a {@code ZonedDateTime}, not null
* @param unit the unit to measure the amount in, not null
* @return the amount of time between this date-time and the end date-time
* @throws DateTimeException if the amount cannot be calculated, or the end
* temporal cannot be converted to a {@code ZonedDateTime}
* @throws UnsupportedTemporalTypeException if the unit is not supported
* @throws ArithmeticException if numeric overflow occurs
*/
@Override
public long until(Temporal endExclusive, TemporalUnit unit) {
ZonedDateTimeJalali end = ZonedDateTimeJalali.from(endExclusive);
if (unit instanceof ChronoUnit) {
ZonedDateTimeJalali start = this;
try {
end = end.withZoneSameInstant(zone);
} catch (DateTimeException ex) {
// end may be out of valid range. Adjust to end's zone.
start = withZoneSameInstant(end.zone);
}
if (unit.isDateBased()) {
return start.dateTime.until(end.dateTime, unit);
} else {
return start.toOffsetDateTime().until(end.toOffsetDateTime(), unit);
}
}
return unit.between(this, end);
}
/**
* Formats this date-time using the specified formatter.
*
* This date-time will be passed to the formatter to produce a string.
*
* @param formatter the formatter to use, not null
* @return the formatted date-time string, not null
* @throws DateTimeException if an error occurs during printing
*/
@Override // override for Javadoc and performance
public String format(DateTimeFormatter formatter) {
Objects.requireNonNull(formatter, "formatter");
return formatter.format(this);
}
//-----------------------------------------------------------------------
/**
* Converts this date-time to an {@code OffsetDateTime}.
*
* This creates an offset date-time using the local date-time and offset.
* The zone ID is ignored.
*
* @return an offset date-time representing the same local date-time and offset, not null
*/
public OffsetDateTimeJalali toOffsetDateTime() {
return OffsetDateTimeJalali.of(dateTime, offset);
}
//-----------------------------------------------------------------------
/**
* Checks if this date-time is equal to another date-time.
*
* The comparison is based on the offset date-time and the zone.
* Only objects of type {@code ZonedDateTime} are compared, other types return false.
*
* @param obj the object to check, null returns false
* @return true if this is equal to the other date-time
*/
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj instanceof ZonedDateTimeJalali) {
ZonedDateTimeJalali other = (ZonedDateTimeJalali) obj;
return dateTime.equals(other.dateTime) &&
offset.equals(other.offset) &&
zone.equals(other.zone);
}
return false;
}
/**
* A hash code for this date-time.
*
* @return a suitable hash code
*/
@Override
public int hashCode() {
return dateTime.hashCode() ^ offset.hashCode() ^ Integer.rotateLeft(zone.hashCode(), 3);
}
//-----------------------------------------------------------------------
/**
* Outputs this date-time as a {@code String}, such as
* {@code 1367-08-12T10:15:30+03:30[Asia/Tehran]}.
*
* The format consists of the {@code LocalDateTimeJalali} followed by the {@code ZoneOffset}.
* If the {@code ZoneId} is not the same as the offset, then the ID is output.
* The output is compatible with ISO-8601 if the offset and ID are the same.
*
* @return a string representation of this date-time, not null
*/
@Override // override for Javadoc
public String toString() {
String str = dateTime.toString() + offset.toString();
if (offset != zone) {
str += '[' + zone.toString() + ']';
}
return str;
}
}