org.bigml.binding.LocalAnomaly Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bigml-binding Show documentation
Show all versions of bigml-binding Show documentation
An open source Java client that gives you a simple binding to interact with BigML. You can use it to
easily create, retrieve, list, update, and delete BigML resources.
package org.bigml.binding;
import org.bigml.binding.localanomaly.AnomalyTree;
import org.bigml.binding.resources.AbstractResource;
import org.bigml.binding.utils.Utils;
import org.json.simple.JSONArray;
import org.json.simple.JSONObject;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/**
* A local Predictive Anomaly Detector.
*
* This module defines an Anomaly Detector to score anomalies in a dataset locally
* or embedded into your application without needing to send requests to BigML.io.
*
* This module cannot only save you a few credits, but also enormously
* reduce the latency for each prediction and let you use your models
* offline.
*
* Example usage (assuming that you have previously set up the BIGML_USERNAME
* and BIGML_API_KEY environment variables and that you own the model/id below):
*
* // API client
* BigMLClient api = new BigMLClient();
*
* // Retrieve a remote anomaly by id
* JSONObject jsonAnomaly = api.getAnomaly("anomaly/551aa203af447f5484000ec0");
*
* // A lightweight wrapper around an Anomaly resurce
* LocalAnomaly localAnomaly = new LocalAnomaly(jsonAnomaly);
*
* // Input data
* JSONObject inputData = (JSONObject) JSONValue.parse("{\"src_bytes\": 350}");
*
* // Calculate score
* localAnomaly.score(inputData);
*
*/
public class LocalAnomaly extends ModelFields implements Serializable {
private static final long serialVersionUID = 1L;
private JSONObject anomaly;
//private String anomalyId;
private JSONArray inputFields;
private Integer sampleSize = null;
private Double meanDepth = null;
private Double expectedMeanDepth = null;
private List topAnomalies;
private List iforest;
public LocalAnomaly(JSONObject anomalyData) throws Exception {
super();
if (anomalyData.get("resource") == null) {
throw new Exception(
"Cannot create the Anomaly instance. Could not " +
"find the 'resource' key in the resource");
}
//anomalyId = (String) anomalyData.get("resource");
anomaly = anomalyData;
if (anomaly.containsKey("object") && anomaly.get("object") instanceof Map) {
anomaly = (JSONObject) anomaly.get("object");
}
if (anomaly.get("sample_size") != null) {
this.sampleSize = ((Number) anomaly.get("sample_size")).intValue();
}
this.inputFields = (JSONArray) anomaly.get("input_fields");
if (anomaly.containsKey("model") && anomaly.get("model") instanceof Map) {
JSONObject model = (JSONObject) anomaly.get("model");
super.initialize((JSONObject) model.get("fields"), null, null, null);
if (model.containsKey("top_anomalies") && model.get("top_anomalies") instanceof List) {
if (model.get("mean_depth") != null) {
this.meanDepth = ((Number) model.get("mean_depth")).doubleValue();
}
JSONObject status = (JSONObject) anomaly.get("status");
if( status != null &&
status.containsKey("code") &&
AbstractResource.FINISHED == ((Number) status.get("code")).intValue() ) {
this.expectedMeanDepth = null;
if (this.meanDepth == null || this.sampleSize == null) {
throw new Exception("The anomaly data is not complete. Score will not be available.");
} else {
double defaultDepth = (
2 * (0.5772156649 +
Math.log(this.sampleSize - 1) -
((float) (this.sampleSize - 1) / this.sampleSize)));
this.expectedMeanDepth = Math.min(this.meanDepth, defaultDepth);
}
this.iforest = new ArrayList();
List iforest = (List) Utils.getJSONObject(anomaly, "model.trees", new JSONArray());
if (!iforest.isEmpty()) {
for (Object anomalyTree : iforest) {
this.iforest.add(new AnomalyTree((JSONObject) ((JSONObject) anomalyTree).get("root"),
objectiveFieldId, fields));
}
}
this.topAnomalies = (List) Utils.getJSONObject(anomaly, "model.top_anomalies", new JSONArray());
} else {
throw new Exception("The anomaly isn't finished yet");
}
} else {
throw new Exception(String.format("Cannot create the Anomaly instance. Could not" +
" find the 'top_anomalies' key in the" +
" resource:\n\n%s", ((JSONObject) anomaly.get("model")).keySet()));
}
}
}
/**
* Returns the anomaly score given by the iforest
*
* To produce an anomaly score, we evaluate each tree in the iforest
* for its depth result (see the depth method in the AnomalyTree
* object for details). We find the average of these depths
* to produce an `observed_mean_depth`. We calculate an
* `expected_mean_depth` using the `sample_size` and `mean_depth`
* parameters which come as part of the forest message.
* We combine those values as seen below, which should result in a
* value between 0 and 1.
*/
@Deprecated
public double score(JSONObject inputData, boolean byName) {
return score(inputData);
}
/**
* Returns the anomaly score given by the iforest
*
* To produce an anomaly score, we evaluate each tree in the iforest
* for its depth result (see the depth method in the AnomalyTree
* object for details). We find the average of these depths
* to produce an `observed_mean_depth`. We calculate an
* `expected_mean_depth` using the `sample_size` and `mean_depth`
* parameters which come as part of the forest message.
* We combine those values as seen below, which should result in a
* value between 0 and 1.
*/
public double score(JSONObject inputData) {
// Checks and cleans input_data leaving the fields used in the model
inputData = filterInputData(inputData);
// Strips affixes for numeric values and casts to the final field type
Utils.cast(inputData, fields);
int depthSum = 0;
if( this.iforest == null || this.iforest.isEmpty() ) {
throw new IllegalStateException("We could not find the iforest information to " +
"compute the anomaly score. Please, rebuild your " +
"Anomaly object from a complete anomaly detector " +
"resource.");
}
for (AnomalyTree anomalyTree : this.iforest) {
depthSum += anomalyTree.depth(inputData).getDepth();
}
double observedMeanDepth = ((double) depthSum) / ((double) this.iforest.size());
return Math.pow(2, (- observedMeanDepth / this.expectedMeanDepth));
}
/**
* Returns the LISP expression needed to filter the subset of
* top anomalies. When include is set to True, only the top
* anomalies are selected by the filter. If set to False, only the
* rest of the dataset is selected.
*/
public String filter(boolean include) {
List anomalyFilters = new ArrayList();
for (JSONObject anomaly : topAnomalies) {
List filterRules = new ArrayList();
List row = (List) Utils.getJSONObject(anomaly, "row", new JSONArray());
for(int index = 0; index < row.size(); index++) {
String fieldId = (String) this.inputFields.get(index);
Object value = row.get(index);
if( value == null ) {
filterRules.add(String.format("(missing? \"%s\")", fieldId));
} else {
String optType = (String) Utils.getJSONObject(super.fields, String.format("%s.optype",fieldId));
if ( "categorical".equals(optType) || "text".equals(optType) ) {
value = String.format("\"%s\"", value.toString());
}
filterRules.add(String.format("(= (f \"%s\") %s)", fieldId, value));
}
}
anomalyFilters.add(String.format("(and %s)", Utils.join(filterRules, " ")));
}
String anomaliesFilter = Utils.join(anomalyFilters, " ");
if( include ) {
if( anomalyFilters.size() == 1) {
return anomaliesFilter;
}
return String.format("(or %s)", anomaliesFilter);
} else {
return String.format("(not (or %s))", anomaliesFilter);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy