org.bigml.binding.LocalTimeseries Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bigml-binding Show documentation
Show all versions of bigml-binding Show documentation
An open source Java client that gives you a simple binding to interact with BigML. You can use it to
easily create, retrieve, list, update, and delete BigML resources.
package org.bigml.binding;
import org.bigml.binding.resources.AbstractResource;
import org.bigml.binding.utils.Utils;
import org.bigml.binding.timeseries.Forecasts;
import org.json.simple.JSONArray;
import org.json.simple.JSONObject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Arrays;
import java.util.Map;
import java.util.HashMap;
import java.util.Comparator;
/**
* A local TimeSeries to create Forecasts.
*
* This module defines a TimeSeries to create forecasts locally or
* embedded into your application without needing to send requests to
* BigML.io.
*
* This module enormously reduces the latency for each prediction and
* let you use your models offline.
*
* Example usage (assuming that you have previously set up the BIGML_USERNAME
* and BIGML_API_KEY environment variables and that you own the model/id below):
*
* // API client
* BigMLClient api = new BigMLClient();
*
* // Retrieve a remote timeseries by id
* JSONObject jsonTimeSeries = api.
* getTimeSeries("timeseries/551aa203af447f5484000ec0");
*
* // A lightweight wrapper around a Time Series
* LocalTimeSeries localTimeSeries = new LocalTimeSeries(jsonTimeSeries);
*
* // Input data
* JSONObject forecastData =
* (JSONObject) JSONValue.parse("{\"000000\": {
* \"horizon\": 30,
* \"ets_model\": {
* \"indices\": [0,1,2],
* \"nomes\": [\"AA,N\"],
* \"criterion\": \"bic\",
* \"limit\": 2
* }
* }");
*
* // Calculate score
* localTimeSeries.forecast(inputData);
*
*/
public class LocalTimeseries extends ModelFields {
private static final long serialVersionUID = 1L;
private static final String RequiredInput = "horizon";
public static final List SubmodelKeys =
Collections.unmodifiableList(Arrays.asList("indices",
"names",
"criterion",
"limit"));
public static final JSONObject DefaultSubmodel =
new JSONObject() {{
put("criterion", "aic");
put("limit", 1);
}};
// Logging
Logger logger = LoggerFactory.getLogger(LocalTimeseries.class);
private JSONObject timeseries;
private JSONObject forecast;
private String timeseriesId;
private JSONArray inputFields;
private JSONArray objectiveFields;
private Boolean allNumericObjectives;
private Long period;
private JSONObject etsModels;
private JSONObject error;
private JSONObject dampedTrend;
private String seasonality;
private String trend;
private JSONObject timeRange;
private JSONObject fieldParameters;
public LocalTimeseries(JSONObject jsonData) throws Exception {
super(Utils.getFromJSONOr(jsonData, "time_series.fields"));
if (!checkModelFields(jsonData)) {
timeseriesId = (String) jsonData.get("resource");
}
if (!(jsonData.containsKey("resource")
&& jsonData.get("resource") != null)) {
BigMLClient client = new BigMLClient(null, null,
BigMLClient.STORAGE);
jsonData = client.getTimeSeries(timeseriesId);
if ((String)jsonData.get("resource") == null) {
throw new Exception(
timeseriesId + " is not a valid resource ID.");
}
}
if (jsonData.containsKey("object") &&
jsonData.get("object") instanceof JSONObject) {
jsonData = (JSONObject)jsonData.get("object");
}
try {
this.timeseriesId = (String) jsonData.get("resource");
this.inputFields = (JSONArray) jsonData.get("input_fields");
this.forecast = (JSONObject) jsonData.get("forecast");
this.objectiveFields = Utils.getFromJSONOr(jsonData,
"objective_fields",
new JSONArray());
String objectiveField =
Utils.getFromJSONOr(jsonData, "objective_field", "");
JSONObject status = Utils.getFromJSONOr(jsonData, "status");
if (status != null &&
status.containsKey("code") &&
AbstractResource.FINISHED == ((Number) status.get("code")).intValue()) {
JSONObject timeseriesInfo = Utils.getFromJSONOr(jsonData, "time_series");
//-- object.model.fields???
this.fields = Utils.getFromJSONOr(timeseriesInfo, "fields");
if (this.inputFields == null || this.inputFields.size() == 0) {
this.inputFields = new JSONArray();
ArrayList sortedFields = new ArrayList(this.fields.keySet());
Collections.sort(sortedFields, new Comparator() {
@SuppressWarnings("unchecked")
public int compare(String k1, String k2) {
Long v1 = Utils.getFromJSONOr(fields, k1 + ".column_number", 0l);
Long v2 = Utils.getFromJSONOr(fields, k2 + ".column_number", 0l);
return v1.compareTo(v2);
}
});
for (String c : sortedFields) {
inputFields.add(c);
}
}
this.allNumericObjectives = Utils.getFromJSONOr(timeseriesInfo,
"all_numeric_objectives",
false);
this.period = Utils.getFromJSONOr(timeseriesInfo, "period", 1l);
this.etsModels = Utils.getFromJSONOr(timeseriesInfo, "ets_models");
this.error = Utils.getFromJSONOr(timeseriesInfo, "error");
this.dampedTrend = Utils.getFromJSONOr(timeseriesInfo, "dampled_trend");
this.seasonality = Utils.getFromJSONOr(timeseriesInfo, "seasonality", null);
this.trend = Utils.getFromJSONOr(timeseriesInfo, "trend", null);
this.timeRange = Utils.getFromJSONOr(timeseriesInfo, "time_range");
this.fieldParameters = Utils.getFromJSONOr(timeseriesInfo, "field_parameters");
//-- not used:
// String objectiveId = objectiveFieldsget("id");
} else {
logger.error("The model is not finished yet");
throw new IllegalStateException("The model isn't finished yet: " + jsonData.toString());
}
} catch (Exception e) {
logger.error("Invalid model structure", e);
throw e;
// throw new InvalidModelException();
}
}
/* Filters the submodels available for the field in the time-series
model according to the criteria provided in the prediction input data
for the field.
*/
private final ArrayList filterSubmodels(final JSONArray submodels,
final JSONObject filterInfo)
throws Throwable {
ArrayList fieldSubmodels = new ArrayList();
ArrayList submodelNames = new ArrayList();
JSONArray indices = Utils.getFromJSONOr(filterInfo, SubmodelKeys.get(0), new JSONArray());
JSONArray names = Utils.getFromJSONOr(filterInfo, SubmodelKeys.get(1), new JSONArray());
// adding all submodels by index if they are not also in the names list
if (indices.size() > 0) {
for (int i = 0; i < submodels.size(); i++) {
if (indices.contains(i)) {
fieldSubmodels.add((JSONObject)submodels.get(i));
}
}
}
// union with filtered by names
String pattern = "";
if (names.size() > 0) {
pattern = Utils.join(names, "|");
// only adding the submodels if they have not been included by using
// indices
for (JSONObject o: fieldSubmodels) {
submodelNames.add((String)o.get("name"));
}
ArrayList namedSubmodels = new ArrayList();
for (Object sm: submodels) {
JSONObject s = (JSONObject)sm;
if (((String)s.get("name")).matches(pattern) &&
!submodelNames.contains(s.get("name"))) {
namedSubmodels.add(s);
}
}
for (JSONObject s: namedSubmodels) {
if (!fieldSubmodels.contains(s))
fieldSubmodels.add(s);
}
}
if (indices.size() == 0 && names.size() == 0) {
for (Object s: submodels) {
fieldSubmodels.add((JSONObject)s);
}
}
// filtering the resulting set by criterion and limit
final String criterion = Utils.getFromJSONOr(filterInfo, SubmodelKeys.get(2), null);
// Float f1 = getFromJSONOr(fieldSubmodels.get(0), criterion, Float.POSITIVE_INFINITY);
if (criterion != null) {
Collections.sort(fieldSubmodels, new Comparator() {
public int compare(JSONObject o1, JSONObject o2) {
Float f1 = Utils.getFromJSONOr(o1, criterion, Float.POSITIVE_INFINITY);
Float f2 = Utils.getFromJSONOr(o2, criterion, Float.POSITIVE_INFINITY);
return f1 > f2 ? 1 : (f2 > f1 ? -1 : 0);
}
});
Object limit = Utils.getFromJSONOr(filterInfo, SubmodelKeys.get(3), null);
if (limit != null) {
int l = Math.min(((Number)limit).intValue(), fieldSubmodels.size());
fieldSubmodels =
new ArrayList(fieldSubmodels.subList(0, l));
}
}
return fieldSubmodels;
}
/* Computes the forecasts for each of the models in the submodels
array. The number of forecasts is set by horizon.
*/
private final ArrayList>
computeForecast(final ArrayList submodels,
final Long horizon)
throws Throwable {
ArrayList> forecasts =
new ArrayList>();
for (final JSONObject sm: submodels) {
String name = (String)sm.get("name");
String trend = name;
String seasonality = null;
if (name.indexOf(",") >= 0) {
String[] cs = name.split(",");
trend = cs[1];
seasonality = cs[2];
}
HashMap f = new HashMap();
f.put("model", name);
f.put("point_forecast", new Forecasts(sm).forecast(trend,
horizon,
seasonality));
forecasts.add(f);
}
return forecasts;
}
/* Returns the class prediction and the confidence
input_data: Input data to be predicted
*/
public final HashMap forecast(final JSONObject inputData)
throws Throwable {
if (inputData == null || inputData.size() == 0) {
return forecast();
}
/* Checks and cleans input_data leaving only the fields used as
objective fields in the model */
HashMap filteredData = this.filterObjectives(inputData);
/* filter submodels: filtering the submodels in the time-series
model to be used in the prediction */
HashMap> filteredSubmodels =
new HashMap>();
for (Object k: filteredData.keySet()) {
JSONObject val = (JSONObject)filteredData.get(k);
JSONObject filterInfo = (JSONObject)val.get("ets_models");
if (filterInfo == null || filterInfo.size() == 0) {
filterInfo = DefaultSubmodel;
}
ArrayList subm =
this.filterSubmodels((JSONArray)this.etsModels.get(k), filterInfo);
filteredSubmodels.put((String)k, subm);
}
HashMap forecasts = new HashMap();
for (Object k: filteredSubmodels.keySet()) {
ArrayList filterInfo = filteredSubmodels.get(k);
forecasts.put((String)k,
this.computeForecast(filterInfo,
((Number)filteredData.get(k).get("horizon")).longValue()));
}
return forecasts;
}
public HashMap forecast()
throws Exception {
HashMap result = new HashMap();
for (Object k: this.timeseries.keySet()) {
JSONObject o = (JSONObject)this.timeseries.get(k);
HashMap lf = new HashMap();
lf.put("point_forecast", this.forecast.get("point_forecast"));
lf.put("point_forecast_2", this.forecast.get("point_forecast"));
lf.put("model", this.forecast.get("model"));
result.put((String)k, lf);
}
return result;
}
/* Filters the keys given in input_data checking against the
objective fields in the time-series model fields.
If `full` is set to True, it also
provides information about the fields that are not used.
*/
public HashMap
filterObjectives(final JSONObject inputData)
throws Exception {
HashMap newInput = new HashMap();
ArrayList unusedFields = new ArrayList();
for (Object k: inputData.keySet()) {
String fid = (String)k;
JSONObject val = (JSONObject)inputData.get(fid);
if (!this.fields.containsKey(fid)) {
if (!this.invertedFields.containsKey(fid)) {
fid = (String)this.invertedFields.get(fid);
}
}
if (this.inputFields.contains(fid)) {
newInput.put(fid, val);
} else {
unusedFields.add(fid);
}
}
// Raise an error if no horizon is provided
for (Object k: inputData.keySet()) {
JSONObject value = this.normalize((JSONObject)inputData.get(k));
if (!(value instanceof Map)) {
logger.error("Bad input data");
throw new
InputDataParseException("Each field input data needs to be specified " +
"as a dictionary. Found " +
value.getClass().toString() +
" for field " + k);
}
if (!value.containsKey("horizon")) {
throw new
InputDataParseException("Each field in input data must contain at " +
"least a \"horizon\" attribute." + value.toString());
}
JSONObject etsModels = Utils.getFromJSONOr(value, "ets_models");
for (Object f: etsModels.keySet()) {
if (!SubmodelKeys.contains(f)) {
throw new
InputDataParseException("Not allowed value for ets_models: " + f);
}
}
}
//-- it seems that unusedFields are not used anywhere, so ignoring them
return newInput;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy