All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bigml.binding.laminar.MathOps Maven / Gradle / Ivy

Go to download

An open source Java client that gives you a simple binding to interact with BigML. You can use it to easily create, retrieve, list, update, and delete BigML resources.

There is a newer version: 2.1.1
Show newest version
package org.bigml.binding.laminar;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.json.simple.JSONArray;
import org.json.simple.JSONObject;

/**
 * Activation functions and helpers
 *
 */
public class MathOps {
	
	// This can be any x where np.exp(x) + 1 == np.exp(x)  Going up to 512
	// isn't strictly necessary, but hey, why not?
	private static int LARGE_EXP = 512;
	

	private static ArrayList> operation(
			String operator, ArrayList> mat, JSONArray vec) {
		
		ArrayList> out = new ArrayList>();
		for (int i=0; i row = (List) mat.get(i);
			
			List newRow = new ArrayList();
			for (int k=0; k> plus(
			ArrayList> mat, JSONArray vec) {
		return operation("+", mat, vec);
	}
	
	private static ArrayList> minus(
			ArrayList> mat, JSONArray vec) {
		return operation("-", mat, vec);
	}
	
	private static ArrayList> times(
			ArrayList> mat, JSONArray vec) {
		return operation("*", mat, vec);
	}
	
	private static ArrayList> divide(
			ArrayList> mat, JSONArray vec) {
		return operation("/", mat, vec);
	}
	
	private static ArrayList> dot(
			ArrayList> mat1, JSONArray mat2) {
		
		ArrayList> outMat = new ArrayList>();
		
		for (int i=0; i row1 = (List) mat1.get(i);
			List newRow = new ArrayList();
			for (int j=0; j row2 = (List) mat2.get(j);
				double sum = 0.0;
				for (int k=0; k> batchNorm(
			ArrayList> mat, JSONArray mean, 
			JSONArray stdev, JSONArray shift, JSONArray scale) {

		ArrayList> normVals = divide(minus(mat, mean), stdev);
		return plus(times(normVals, scale), shift);
	}
	
	
	public static ArrayList> destandardize(
			ArrayList> vec, Double mean, Double stdev) {
		
		ArrayList> out = new ArrayList>();
		for (int i=0; i row = (List) vec.get(i);
			
			List newRow = new ArrayList();
			for (int k=0; k> toWidth(
			ArrayList> mat, int width) {
		
		int ntiles = 1;
		if (width > mat.get(0).size()) {
			ntiles = (int) Math.ceil( width / mat.get(0).size() );
		}
		
		ArrayList> output = new ArrayList>();
		for (List row: mat) {
			List newRow = new ArrayList();
			for (int i=0; i> addResiduals(
			ArrayList> residuals, 
			ArrayList> identities) {
		
		ArrayList> output = new ArrayList>();
		
		ArrayList> toAdd = 
				toWidth(identities, residuals.get(0).size());
		
		for (int i=0; i residualRow = (List) residuals.get(i);
			List toAddRow = (List) toAdd.get(i);
			
			List newRow = new ArrayList();
			for (int j=0; j> propagate(
			ArrayList> input, JSONArray layers) {
		
		ArrayList> identities = input;
		ArrayList> lastX = input;
		
		for (Object layerObj: layers) {
			JSONObject layer = (JSONObject) layerObj;
			JSONArray weights = (JSONArray) layer.get("weights");
			JSONArray mean = (JSONArray) layer.get("mean");
			JSONArray stdev = (JSONArray) layer.get("stdev");
			JSONArray scale = (JSONArray) layer.get("scale");
			JSONArray offset = (JSONArray) layer.get("offset");
			Boolean residuals = (Boolean) layer.get("residuals");
			String afn = (String) layer.get("activation_function");
			
			ArrayList> nextIn = dot(lastX, weights);
			
			if (mean != null && stdev != null) {
				nextIn = batchNorm(nextIn, mean, stdev, offset, scale);
			} else {
				nextIn = plus(nextIn, offset);
			}
			
			if (residuals != null && residuals) {
				nextIn = addResiduals(nextIn, identities);
				lastX = broadcast(afn, nextIn);
				identities = lastX;
			} else {
				lastX = broadcast(afn, nextIn);
			}
		}
		
		return lastX;
	}
	
	
	private static ArrayList> broadcast(
			String afn, ArrayList> xs) {
		
		ArrayList> result = new ArrayList>();
		if (xs.size() == 0) {
			return result;
		}
		
		if ("identity".equals(afn)) {
			return xs;
		}
		if ("softmax".equals(afn)) {
			return softmax(xs);
		}
		
		for (List row: xs) {
			List newRow = new ArrayList();
			for (Double d: row) {
				if ("tanh".equals(afn)) {
					newRow.add(Math.tanh(d));
				}
				if ("sigmoid".equals(afn)) {
					if (d > 0) {
						if (d < LARGE_EXP) {
							double exVal = Math.exp(d);
							newRow.add(exVal / (exVal + 1));
						} else {
							newRow.add(1.0);
						}
					} else {
						if (-d < LARGE_EXP) {
							newRow.add(1 / (1 + Math.exp(-d)));
						} else {
							newRow.add(0.0);
						}
					}
				}
				if ("softplus".equals(afn)) {
					newRow.add(d < LARGE_EXP ? Math.log((Math.exp(d) + 1)) : d);
				}
				if ("relu".equals(afn)) {
					newRow.add(d>0 ? d : 0);
				}
			}
			result.add(newRow);
		}

		return result;
	}
	
	
	private static ArrayList> softmax(
			ArrayList> xs) {
		
		double max = 0.0;
		for (List row: xs) {
			double maxRow = Collections.max(row);
			max = maxRow > max ? maxRow : max;
		}
		
		ArrayList> exps = new ArrayList>();
		for (List row: xs) {
			List newRow = new ArrayList();
			for (Double d: row) {
				newRow.add(Math.exp(d - max));
			}
			exps.add(newRow);
		}
		
		double sumex = 0.0;
		for (List exp: exps) {
			for (Double d: exp) {
				sumex += d;
			}
		}
		
		ArrayList> result = new ArrayList>();
		for (List exp: exps) {
			List newRow = new ArrayList();
			for (Double d: exp) {
				newRow.add(d / sumex);
			}
			result.add(newRow);
		}
		
		return result;
	}
	
	
	public static ArrayList> sumAndNormalize(
			ArrayList>> inputs, boolean isRegression) {
		
		ArrayList> first = (ArrayList>) inputs.get(0);
		Double[] ysums = new Double[first.get(0).size()];
		for (int j=0; j> input = (ArrayList>) inputObj;
			for (int k=0; k> outDist = new ArrayList>();
		List dist = new ArrayList();
		
		double sum = 0.0;
		for (int j=0; j




© 2015 - 2025 Weber Informatics LLC | Privacy Policy