org.biojava.nbio.structure.StructureTools Maven / Gradle / Ivy
Show all versions of biojava-structure Show documentation
/*
* BioJava development code
*
* This code may be freely distributed and modified under the
* terms of the GNU Lesser General Public Licence. This should
* be distributed with the code. If you do not have a copy,
* see:
*
* http://www.gnu.org/copyleft/lesser.html
*
* Copyright for this code is held jointly by the individual
* authors. These should be listed in @author doc comments.
*
* For more information on the BioJava project and its aims,
* or to join the biojava-l mailing list, visit the home page
* at:
*
* http://www.biojava.org/
*
* Created on Jan 4, 2006
*
*/
package org.biojava.nbio.structure;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import javax.vecmath.Point3d;
import org.biojava.nbio.structure.align.util.AtomCache;
import org.biojava.nbio.structure.contact.AtomContactSet;
import org.biojava.nbio.structure.contact.Grid;
import org.biojava.nbio.structure.io.FileParsingParameters;
import org.biojava.nbio.structure.io.PDBFileParser;
import org.biojava.nbio.core.util.FileDownloadUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* A class that provides some tool methods.
*
* @author Andreas Prlic
* @author Jules Jacobsen
* @since 1.0
*/
public class StructureTools {
private static final Logger logger = LoggerFactory.getLogger(StructureTools.class);
// Amino Acid backbone
/**
* The atom name of the backbone C-alpha atom. Note that this can be
* ambiguous depending on the context since Calcium atoms use the same name
* in PDB.
*/
public static final String CA_ATOM_NAME = "CA";
/**
* The atom name for the backbone amide nitrogen
*/
public static final String N_ATOM_NAME = "N";
/**
* The atom name for the backbone carbonyl
*/
public static final String C_ATOM_NAME = "C";
/**
* The atom name for the backbone carbonyl oxygen
*/
public static final String O_ATOM_NAME = "O";
/**
* The atom name of the side-chain C-beta atom
*/
public static final String CB_ATOM_NAME = "CB";
// Nucleotide backbone
/**
* The atom name of the backbone C1' in RNA
*/
public static final String C1_ATOM_NAME = "C1'";
/**
* The atom name of the backbone C2' in RNA
*/
public static final String C2_ATOM_NAME = "C2'";
/**
* The atom name of the backbone C3' in RNA
*/
public static final String C3_ATOM_NAME = "C3'";
/**
* The atom name of the backbone C4' in RNA
*/
public static final String C4_ATOM_NAME = "C4'";
/**
* The atom name of the backbone O2' in RNA
*/
public static final String O2_ATOM_NAME = "O2'";
/**
* The atom name of the backbone O3' in RNA
*/
public static final String O3_ATOM_NAME = "O3'";
/**
* The atom name of the backbone O4' in RNA
*/
public static final String O4_ATOM_NAME = "O4'";
/**
* The atom name of the backbone O4' in RNA
*/
public static final String O5_ATOM_NAME = "O5'";
/**
* The atom name of the backbone O4' in RNA
*/
public static final String OP1_ATOM_NAME = "OP1";
/**
* The atom name of the backbone O4' in RNA
*/
public static final String OP2_ATOM_NAME = "OP2";
/**
* The atom name of the backbone phosphate in RNA
*/
public static final String P_ATOM_NAME = "P";
/**
* The atom used as representative for nucleotides, equivalent to
* {@link #CA_ATOM_NAME} for proteins
*/
public static final String NUCLEOTIDE_REPRESENTATIVE = P_ATOM_NAME;
/**
* The character to use for unknown compounds in sequence strings
*/
public static final char UNKNOWN_GROUP_LABEL = 'X';
/**
* Below this ratio of aminoacid/nucleotide residues to the sequence total,
* we use simple majority of aminoacid/nucleotide residues to decide the
* character of the chain (protein/nucleotide)
*/
public static final double RATIO_RESIDUES_TO_TOTAL = 0.95;
/**
* Threshold for plausible binding of a ligand to the selected substructure
*/
public static final double DEFAULT_LIGAND_PROXIMITY_CUTOFF = 5;
// there is a file format change in PDB 3.0 and nucleotides are being
// renamed
private static final Map nucleotides30;
private static final Map nucleotides23;
// amino acid 3 and 1 letter code definitions
private static final Map aminoAcids;
private static final Set hBondDonorAcceptors;
private static final Set NUCLEOTIDE_BACKBONE_ATOMS;
private static final Set AMINOACID_BACKBONE_ATOMS;
static {
nucleotides30 = new HashMap<>();
nucleotides30.put("DA", 'A');
nucleotides30.put("DC", 'C');
nucleotides30.put("DG", 'G');
nucleotides30.put("DT", 'T');
nucleotides30.put("DI", 'I');
nucleotides30.put("A", 'A');
nucleotides30.put("G", 'G');
nucleotides30.put("C", 'C');
nucleotides30.put("U", 'U');
nucleotides30.put("I", 'I');
// the DNA linkers - the +C , +G, +A +T +U and +I have been replaced
// with these:
nucleotides30.put("TAF", UNKNOWN_GROUP_LABEL); // Fluorinated Thymine
nucleotides30.put("TC1", UNKNOWN_GROUP_LABEL); // Furanosyl
nucleotides30.put("TFE", UNKNOWN_GROUP_LABEL); // Fluorinated Thymine
nucleotides30.put("TFO", UNKNOWN_GROUP_LABEL); // Tenofovir (3'
// terminator)
nucleotides30.put("TGP", UNKNOWN_GROUP_LABEL); // Guanine variant
nucleotides30.put("THX", UNKNOWN_GROUP_LABEL); // 5' terminator
nucleotides30.put("TLC", UNKNOWN_GROUP_LABEL); // Thymine with dicyclic
// sugar
nucleotides30.put("TLN", UNKNOWN_GROUP_LABEL); // locked Thymine
nucleotides30.put("LCG", UNKNOWN_GROUP_LABEL); // locked Guanine
nucleotides30.put("TP1", UNKNOWN_GROUP_LABEL); // Thymine peptide
// nucleic acid, with
// added methyl
nucleotides30.put("CP1", UNKNOWN_GROUP_LABEL); // Cytidine peptide
// nucleic acid, with
// added methyl
nucleotides30.put("TPN", UNKNOWN_GROUP_LABEL); // Thymine peptide
// nucleic acid
nucleotides30.put("CPN", UNKNOWN_GROUP_LABEL); // Cytidine peptide
// nucleic acid
nucleotides30.put("GPN", UNKNOWN_GROUP_LABEL); // Guanine peptide
// nucleic acid
nucleotides30.put("APN", UNKNOWN_GROUP_LABEL); // Adenosine peptide
// nucleic acid
nucleotides30.put("TPC", UNKNOWN_GROUP_LABEL); // Thymine variant
// store nucleic acids (C, G, A, T, U, and I), and
// the modified versions of nucleic acids (+C, +G, +A, +T, +U, and +I),
// and
nucleotides23 = new HashMap<>();
String[] names = { "C", "G", "A", "T", "U", "I", "+C", "+G", "+A",
"+T", "+U", "+I" };
for (String n : names) {
nucleotides23.put(n, n.charAt(n.length() - 1));
}
aminoAcids = new HashMap<>();
aminoAcids.put("GLY", 'G');
aminoAcids.put("ALA", 'A');
aminoAcids.put("VAL", 'V');
aminoAcids.put("LEU", 'L');
aminoAcids.put("ILE", 'I');
aminoAcids.put("PHE", 'F');
aminoAcids.put("TYR", 'Y');
aminoAcids.put("TRP", 'W');
aminoAcids.put("PRO", 'P');
aminoAcids.put("HIS", 'H');
aminoAcids.put("LYS", 'K');
aminoAcids.put("ARG", 'R');
aminoAcids.put("SER", 'S');
aminoAcids.put("THR", 'T');
aminoAcids.put("GLU", 'E');
aminoAcids.put("GLN", 'Q');
aminoAcids.put("ASP", 'D');
aminoAcids.put("ASN", 'N');
aminoAcids.put("CYS", 'C');
aminoAcids.put("MET", 'M');
// MSE is only found as a molecular replacement for MET
aminoAcids.put("MSE", 'M');
// 'non-standard', genetically encoded
// http://www.chem.qmul.ac.uk/iubmb/newsletter/1999/item3.html
// IUBMB recommended name is 'SEC' but the wwPDB currently use 'CSE'
// likewise 'PYL' (IUBMB) and 'PYH' (PDB)
aminoAcids.put("CSE", 'U');
aminoAcids.put("SEC", 'U');
aminoAcids.put("PYH", 'O');
aminoAcids.put("PYL", 'O');
hBondDonorAcceptors = new HashSet<>();
hBondDonorAcceptors.add(Element.N);
hBondDonorAcceptors.add(Element.O);
hBondDonorAcceptors.add(Element.S);
NUCLEOTIDE_BACKBONE_ATOMS = new HashSet<>(Arrays.asList(C1_ATOM_NAME, C2_ATOM_NAME, C3_ATOM_NAME, C4_ATOM_NAME, O2_ATOM_NAME, O3_ATOM_NAME, O4_ATOM_NAME, O5_ATOM_NAME, OP1_ATOM_NAME, OP2_ATOM_NAME, P_ATOM_NAME));
AMINOACID_BACKBONE_ATOMS = new HashSet<>(Arrays.asList(CA_ATOM_NAME, C_ATOM_NAME, N_ATOM_NAME, O_ATOM_NAME));
}
/**
* Count how many Atoms are contained within a Structure object.
*
* @param s
* the structure object
* @return the number of Atoms in this Structure
*/
public static int getNrAtoms(Structure s) {
int nrAtoms = 0;
Iterator iter = new GroupIterator(s);
while (iter.hasNext()) {
Group g = iter.next();
nrAtoms += g.size();
}
return nrAtoms;
}
/**
* Count how many groups are contained within a structure object.
*
* @param s
* the structure object
* @return the number of groups in the structure
*/
public static int getNrGroups(Structure s) {
int nrGroups = 0;
List chains = s.getChains(0);
for (Chain c : chains) {
nrGroups += c.getAtomLength();
}
return nrGroups;
}
/**
* Returns an array of the requested Atoms from the Structure object.
* Iterates over all groups and checks if the requested atoms are in this
* group, no matter if this is a {@link AminoAcid} or {@link HetatomImpl}
* group. If the group does not contain all requested atoms then no atoms
* are added for that group. For structures with more than one model, only
* model 0 will be used.
*
* @param s
* the structure to get the atoms from
*
* @param atomNames
* contains the atom names to be used.
* @return an Atom[] array
*/
public static Atom[] getAtomArray(Structure s, String[] atomNames) {
List chains = s.getModel(0);
List atoms = new ArrayList<>();
extractAtoms(atomNames, chains, atoms);
return atoms.toArray(new Atom[0]);
}
/**
* Returns an array of the requested Atoms from the Structure object. In
* contrast to {@link #getAtomArray(Structure, String[])} this method
* iterates over all chains. Iterates over all chains and groups and checks
* if the requested atoms are in this group, no matter if this is a
* {@link AminoAcid} or {@link HetatomImpl} group. If the group does not
* contain all requested atoms then no atoms are added for that group. For
* structures with more than one model, only model 0 will be used.
*
* @param s
* the structure to get the atoms from
*
* @param atomNames
* contains the atom names to be used.
* @return an Atom[] array
*/
public static Atom[] getAtomArrayAllModels(Structure s,
String[] atomNames) {
List atoms = new ArrayList<>();
for (int i = 0; i < s.nrModels(); i++) {
List chains = s.getModel(i);
extractAtoms(atomNames, chains, atoms);
}
return atoms.toArray(new Atom[0]);
}
/**
* Convert all atoms of the structure (all models) into an Atom array
*
* @param s
* input structure
* @return all atom array
*/
public static Atom[] getAllAtomArray(Structure s) {
List atoms = new ArrayList<>();
AtomIterator iter = new AtomIterator(s);
while (iter.hasNext()) {
Atom a = iter.next();
atoms.add(a);
}
return atoms.toArray(new Atom[0]);
}
/**
* Convert all atoms of the structure (specified model) into an Atom array
*
* @param s
* input structure
* @return all atom array
*/
public static Atom[] getAllAtomArray(Structure s, int model) {
List atoms = new ArrayList<>();
AtomIterator iter = new AtomIterator(s,model);
while (iter.hasNext()) {
Atom a = iter.next();
atoms.add(a);
}
return atoms.toArray(new Atom[0]);
}
/**
* Returns and array of all atoms of the chain, including
* Hydrogens (if present) and all HETATOMs. Waters are not included.
*
* @param c
* input chain
* @return all atom array
*/
public static Atom[] getAllAtomArray(Chain c) {
List atoms = new ArrayList<>();
for (Group g : c.getAtomGroups()) {
if (g.isWater())
continue;
atoms.addAll(g.getAtoms());
}
return atoms.toArray(new Atom[0]);
}
/**
* List of groups from the structure not included in ca (e.g. ligands).
*
* Unaligned groups are searched from all chains referenced in ca, as well
* as any chains in the first model of the structure from ca[0], if any.
*
* @param ca an array of atoms
* @return
*/
public static List getUnalignedGroups(Atom[] ca) {
Set chains = new HashSet<>();
Set caGroups = new HashSet<>();
// Create list of all chains in this structure
Structure s = null;
if (ca.length > 0) {
Group g = ca[0].getGroup();
if (g != null) {
Chain c = g.getChain();
if (c != null) {
s = c.getStructure();
}
}
}
if (s != null) {
// Add all chains from the structure
chains.addAll(s.getChains(0));
}
// Add groups and chains from ca
for (Atom a : ca) {
Group g = a.getGroup();
if (g != null) {
caGroups.add(g);
Chain c = g.getChain();
if (c != null) {
chains.add(c);
}
}
}
// Iterate through all chains, finding groups not in ca
List unadded = new ArrayList<>();
for (Chain c : chains) {
for (Group g : c.getAtomGroups()) {
if (!caGroups.contains(g)) {
unadded.add(g);
}
}
}
return unadded;
}
/**
* Finds all ligand groups from the target which fall within the cutoff distance
* of some atom from the query set.
*
* @param target Set of groups including the ligands
* @param query Atom selection
* @param cutoff Distance from query atoms to consider, in angstroms
* @return All groups from the target with at least one atom within cutoff of a query atom
* @see StructureTools#DEFAULT_LIGAND_PROXIMITY_CUTOFF
*/
public static List getLigandsByProximity(Collection target, Atom[] query, double cutoff) {
// Spatial hashing of the reduced structure
Grid grid = new Grid(cutoff);
grid.addAtoms(query);
List ligands = new ArrayList<>();
for(Group g :target ) {
// don't worry about waters
if(g.isWater()) {
continue;
}
if(g.isPolymeric() ) {
// Polymers aren't ligands
continue;
}
// It is a ligand!
// Check that it's within cutoff of something in reduced
List groupAtoms = g.getAtoms();
if( ! grid.hasAnyContact(Calc.atomsToPoints(groupAtoms))) {
continue;
}
ligands.add(g);
}
return ligands;
}
/**
* Adds a particular group to a structure. A new chain will be created if necessary.
*
* When adding multiple groups, pass the return value of one call as the
* chainGuess parameter of the next call for efficiency.
*
* Chain guess = null;
* for(Group g : groups) {
* guess = addGroupToStructure(s, g, guess );
* }
*
* @param s structure to receive the group
* @param g group to add
* @param chainGuess (optional) If not null, should be a chain from s. Used
* to improve performance when adding many groups from the same chain
* @param clone Indicates whether the input group should be cloned before
* being added to the new chain
* @return the chain g was added to
*/
public static Chain addGroupToStructure(Structure s, Group g, int model, Chain chainGuess, boolean clone ) {
// Find or create the chain
String chainId = g.getChainId();
assert !chainId.isEmpty();
Chain chain;
if (chainGuess != null && chainGuess.getId().equals(chainId)) {
// previously guessed chain
chain = chainGuess;
} else {
// Try to guess
chain = s.getChain(chainId, model);
if (chain == null) {
// no chain found
chain = new ChainImpl();
chain.setId(chainId);
Chain oldChain = g.getChain();
chain.setName(oldChain.getName());
EntityInfo oldEntityInfo = oldChain.getEntityInfo();
EntityInfo newEntityInfo;
if (oldEntityInfo == null) {
newEntityInfo = new EntityInfo();
s.addEntityInfo(newEntityInfo);
} else {
newEntityInfo = s.getEntityById(oldEntityInfo.getMolId());
if (newEntityInfo == null) {
newEntityInfo = new EntityInfo(oldEntityInfo);
s.addEntityInfo(newEntityInfo);
}
}
newEntityInfo.addChain(chain);
chain.setEntityInfo(newEntityInfo);
// TODO Do the seqres need to be cloned too? -SB 2016-10-7
chain.setSeqResGroups(oldChain.getSeqResGroups());
chain.setSeqMisMatches(oldChain.getSeqMisMatches());
s.addChain(chain, model);
}
}
// Add cloned group
if (clone) {
g = (Group) g.clone();
}
chain.addGroup(g);
return chain;
}
/**
* Add a list of groups to a new structure. Chains will be automatically
* created in the new structure as needed.
* @param s structure to receive the group
* @param groups groups to add
* @param model model number
* @param clone Indicates whether the input groups should be cloned before
* being added to the new chain
*/
public static void addGroupsToStructure(Structure s, Collection groups, int model, boolean clone) {
Chain chainGuess = null;
for(Group g : groups) {
chainGuess = addGroupToStructure(s, g, model, chainGuess, clone);
}
}
/**
* Expand a set of atoms into all groups from the same structure.
*
* If the structure is set, only the first atom is used (assuming all
* atoms come from the same original structure).
* If the atoms aren't linked to a structure (for instance, for cloned atoms),
* searches all chains of all atoms for groups.
* @param atoms Sample of atoms
* @return All groups from all chains accessible from the input atoms
*/
public static Set getAllGroupsFromSubset(Atom[] atoms) {
return getAllGroupsFromSubset(atoms,null);
}
/**
* Expand a set of atoms into all groups from the same structure.
*
* If the structure is set, only the first atom is used (assuming all
* atoms come from the same original structure).
* If the atoms aren't linked to a structure (for instance, for cloned atoms),
* searches all chains of all atoms for groups.
* @param atoms Sample of atoms
* @param types Type of groups to return (useful for getting only ligands, for instance).
* Null gets all groups.
* @return All groups from all chains accessible from the input atoms
*/
public static Set getAllGroupsFromSubset(Atom[] atoms,GroupType types) {
// Get the full structure
Structure s = null;
if (atoms.length > 0) {
Group g = atoms[0].getGroup();
if (g != null) {
Chain c = g.getChain();
if (c != null) {
s = c.getStructure();
}
}
}
// Collect all groups from the structure
Set allChains = new HashSet<>();
if( s != null ) {
allChains.addAll(s.getChains());
}
// In case the structure wasn't set, need to use ca chains too
for(Atom a : atoms) {
Group g = a.getGroup();
if(g != null) {
Chain c = g.getChain();
if( c != null ) {
allChains.add(c);
}
}
}
if(allChains.isEmpty() ) {
return Collections.emptySet();
}
// Extract all ligand groups
Set full = new HashSet<>();
for(Chain c : allChains) {
if(types == null) {
full.addAll(c.getAtomGroups());
} else {
full.addAll(c.getAtomGroups(types));
}
}
return full;
}
/**
* Returns and array of all non-Hydrogen atoms in the given Structure,
* optionally including HET atoms or not. Waters are not included.
*
* @param s
* @param hetAtoms
* if true HET atoms are included in array, if false they are not
* @return
*/
public static final Atom[] getAllNonHAtomArray(Structure s, boolean hetAtoms) {
AtomIterator iter = new AtomIterator(s);
return getAllNonHAtomArray(s, hetAtoms, iter);
}
/**
* Returns and array of all non-Hydrogen atoms in the given Structure,
* optionally including HET atoms or not. Waters are not included.
*
* @param s
* @param hetAtoms
* if true HET atoms are included in array, if false they are not
* @param modelNr Model number to draw atoms from
* @return
*/
public static Atom[] getAllNonHAtomArray(Structure s, boolean hetAtoms, int modelNr) {
AtomIterator iter = new AtomIterator(s,modelNr);
return getAllNonHAtomArray(s, hetAtoms, iter);
}
private static Atom[] getAllNonHAtomArray(Structure s, boolean hetAtoms, AtomIterator iter) {
List atoms = new ArrayList<>();
while (iter.hasNext()) {
Atom a = iter.next();
if (a.getElement() == Element.H)
continue;
Group g = a.getGroup();
if (g.isWater())
continue;
if (!hetAtoms && g.getType().equals(GroupType.HETATM))
continue;
atoms.add(a);
}
return atoms.toArray(new Atom[0]);
}
/**
* Returns and array of all non-Hydrogen atoms in the given Chain,
* optionally including HET atoms or not Waters are not included.
*
* @param c
* @param hetAtoms
* if true HET atoms are included in array, if false they are not
* @return
*/
public static Atom[] getAllNonHAtomArray(Chain c, boolean hetAtoms) {
List atoms = new ArrayList<>();
for (Group g : c.getAtomGroups()) {
if (g.isWater())
continue;
for (Atom a : g.getAtoms()) {
if (a.getElement() == Element.H)
continue;
if (!hetAtoms && g.getType().equals(GroupType.HETATM))
continue;
atoms.add(a);
}
}
return atoms.toArray(new Atom[0]);
}
/**
* Returns and array of all non-Hydrogen atoms coordinates in the given Chain,
* optionally including HET atoms or not Waters are not included.
*
* @param c
* @param hetAtoms
* if true HET atoms are included in array, if false they are not
* @return
*/
public static Point3d[] getAllNonHCoordsArray(Chain c, boolean hetAtoms) {
List atoms = new ArrayList<>();
for (Group g : c.getAtomGroups()) {
if (g.isWater())
continue;
for (Atom a : g.getAtoms()) {
if (a.getElement() == Element.H)
continue;
if (!hetAtoms && g.getType().equals(GroupType.HETATM))
continue;
atoms.add(a.getCoordsAsPoint3d());
}
}
return atoms.toArray(new Point3d[0]);
}
/**
* Adds to the given atoms list, all atoms of groups that contained all
* requested atomNames, i.e. if a group does not contain all of the
* requested atom names, its atoms won't be added.
*
* @param atomNames
* @param chains
* @param atoms
*/
private static void extractAtoms(String[] atomNames, List chains, List atoms) {
for (Chain c : chains) {
for (Group g : c.getAtomGroups()) {
// a temp container for the atoms of this group
List thisGroupAtoms = new ArrayList<>();
// flag to check if this group contains all the requested atoms.
boolean thisGroupAllAtoms = true;
for (String atomName : atomNames) {
Atom a = g.getAtom(atomName);
if (a == null) {
// this group does not have a required atom, skip it...
thisGroupAllAtoms = false;
break;
}
thisGroupAtoms.add(a);
}
if (thisGroupAllAtoms) {
// add the atoms of this group to the array.
atoms.addAll(thisGroupAtoms);
}
}
}
}
/**
* Returns an array of the requested Atoms from the Chain object. Iterates
* over all groups and checks if the requested atoms are in this group, no
* matter if this is a AminoAcid or Hetatom group. If the group does not
* contain all requested atoms then no atoms are added for that group.
*
* @param c
* the Chain to get the atoms from
*
* @param atomNames
* contains the atom names to be used.
* @return an Atom[] array
*/
public static Atom[] getAtomArray(Chain c, String[] atomNames) {
List atoms = new ArrayList<>();
for (Group g : c.getAtomGroups()) {
// a temp container for the atoms of this group
List thisGroupAtoms = new ArrayList<>();
// flag to check if this group contains all the requested atoms.
boolean thisGroupAllAtoms = true;
for (String atomName : atomNames) {
Atom a = g.getAtom(atomName);
if (a == null) {
logger.debug("Group {} ({}) does not have the required atom '{}'", g.getResidueNumber(), g.getPDBName(), atomName);
// this group does not have a required atom, skip it...
thisGroupAllAtoms = false;
break;
}
thisGroupAtoms.add(a);
}
if (thisGroupAllAtoms) {
// add the atoms of this group to the array.
atoms.addAll(thisGroupAtoms);
}
}
return atoms.toArray(new Atom[0]);
}
/**
* Returns an Atom array of the C-alpha atoms. Any atom that is a carbon and
* has CA name will be returned.
*
* @param c
* the structure object
* @return an Atom[] array
* @see #getRepresentativeAtomArray(Chain)
*/
public static Atom[] getAtomCAArray(Chain c) {
List atoms = new ArrayList<>();
for (Group g : c.getAtomGroups()) {
if (g.hasAtom(CA_ATOM_NAME)
&& g.getAtom(CA_ATOM_NAME).getElement() == Element.C) {
atoms.add(g.getAtom(CA_ATOM_NAME));
}
}
return atoms.toArray(new Atom[0]);
}
/**
* Gets a representative atom for each group that is part of the chain
* backbone. Note that modified aminoacids won't be returned as part of the
* backbone if the {@link org.biojava.nbio.structure.chem.ReducedChemCompProvider} was used to load the
* structure.
*
* For amino acids, the representative is a CA carbon. For nucleotides, the
* representative is the {@value #NUCLEOTIDE_REPRESENTATIVE}. Other group
* types will be ignored.
*
* @param c
* @return representative Atoms of the chain backbone
* @since Biojava 4.1.0
*/
public static Atom[] getRepresentativeAtomArray(Chain c) {
List atoms = new ArrayList<>();
for (Group g : c.getAtomGroups()) {
switch (g.getType()) {
case AMINOACID:
if (g.hasAtom(CA_ATOM_NAME)
&& g.getAtom(CA_ATOM_NAME).getElement() == Element.C) {
atoms.add(g.getAtom(CA_ATOM_NAME));
}
break;
case NUCLEOTIDE:
if (g.hasAtom(NUCLEOTIDE_REPRESENTATIVE)) {
atoms.add(g.getAtom(NUCLEOTIDE_REPRESENTATIVE));
}
break;
default:
// don't add
}
}
return atoms.toArray(new Atom[0]);
}
/**
* Provides an equivalent copy of Atoms in a new array. Clones everything,
* starting with parent groups and chains. The chain will only contain
* groups that are part of the input array.
*
* @param ca
* array of representative atoms, e.g. CA atoms
* @return Atom array
* @since Biojava 4.1.0
*/
public static Atom[] cloneAtomArray(Atom[] ca) {
Atom[] newCA = new Atom[ca.length];
List model = new ArrayList<>();
int apos = -1;
for (Atom a : ca) {
apos++;
Group parentG = a.getGroup();
Chain parentC = parentG.getChain();
Chain newChain = null;
for (Chain c : model) {
if (c.getName().equals(parentC.getName())) {
newChain = c;
break;
}
}
if (newChain == null) {
newChain = new ChainImpl();
newChain.setId(parentC.getId());
newChain.setName(parentC.getName());
model.add(newChain);
}
Group parentN = (Group) parentG.clone();
newCA[apos] = parentN.getAtom(a.getName());
try {
// if the group doesn't exist yet, this produces a StructureException
newChain.getGroupByPDB(parentN.getResidueNumber());
} catch (StructureException e) {
// the group doesn't exist yet in the newChain, let's add it
newChain.addGroup(parentN);
}
}
return newCA;
}
/**
* Clone a set of representative Atoms, but returns the parent groups
*
* @param ca
* Atom array
* @return Group array
*/
public static Group[] cloneGroups(Atom[] ca) {
Group[] newGroup = new Group[ca.length];
List model = new ArrayList<>();
int apos = -1;
for (Atom a : ca) {
apos++;
Group parentG = a.getGroup();
Chain parentC = parentG.getChain();
Chain newChain = null;
for (Chain c : model) {
if (c.getName().equals(parentC.getName())) {
newChain = c;
break;
}
}
if (newChain == null) {
newChain = new ChainImpl();
newChain.setName(parentC.getName());
model.add(newChain);
}
Group ng = (Group) parentG.clone();
newGroup[apos] = ng;
newChain.addGroup(ng);
}
return newGroup;
}
/**
* Utility method for working with circular permutations. Creates a
* duplicated and cloned set of Calpha atoms from the input array.
*
* @param ca2
* atom array
* @return cloned and duplicated set of input array
*/
public static Atom[] duplicateCA2(Atom[] ca2) {
// we don't want to rotate input atoms, do we?
Atom[] ca2clone = new Atom[ca2.length * 2];
int pos = 0;
Chain c = null;
String prevChainId = "";
for (Atom a : ca2) {
Group g = (Group) a.getGroup().clone(); // works because each group
// has only a single atom
if (c == null) {
c = new ChainImpl();
Chain orig = a.getGroup().getChain();
c.setId(orig.getId());
c.setName(orig.getName());
} else {
Chain orig = a.getGroup().getChain();
if (!orig.getId().equals(prevChainId)) {
c = new ChainImpl();
c.setId(orig.getId());
c.setName(orig.getName());
}
}
c.addGroup(g);
ca2clone[pos] = g.getAtom(a.getName());
pos++;
}
// Duplicate ca2!
c = null;
prevChainId = "";
for (Atom a : ca2) {
Group g = (Group) a.getGroup().clone();
if (c == null) {
c = new ChainImpl();
Chain orig = a.getGroup().getChain();
c.setId(orig.getId());
c.setName(orig.getName());
} else {
Chain orig = a.getGroup().getChain();
if (!orig.getId().equals(prevChainId)) {
c = new ChainImpl();
c.setId(orig.getId());
c.setName(orig.getName());
}
}
c.addGroup(g);
ca2clone[pos] = g.getAtom(a.getName());
pos++;
}
return ca2clone;
}
/**
* Return an Atom array of the C-alpha atoms. Any atom that is a carbon and
* has CA name will be returned.
*
* @param s
* the structure object
* @return an Atom[] array
* @see #getRepresentativeAtomArray(Structure)
*/
public static Atom[] getAtomCAArray(Structure s) {
List atoms = new ArrayList<>();
for (Chain c : s.getChains()) {
for (Group g : c.getAtomGroups()) {
if (g.hasAtom(CA_ATOM_NAME)
&& g.getAtom(CA_ATOM_NAME).getElement() == Element.C) {
atoms.add(g.getAtom(CA_ATOM_NAME));
}
}
}
return atoms.toArray(new Atom[atoms.size()]);
}
/**
* Gets a representative atom for each group that is part of the chain
* backbone. Note that modified aminoacids won't be returned as part of the
* backbone if the {@link org.biojava.nbio.structure.chem.ReducedChemCompProvider} was used to load the
* structure.
*
* For amino acids, the representative is a CA carbon. For nucleotides, the
* representative is the {@value #NUCLEOTIDE_REPRESENTATIVE}. Other group
* types will be ignored.
*
* @param s
* Input structure
* @return representative Atoms of the structure backbone
* @since Biojava 4.1.0
*/
public static Atom[] getRepresentativeAtomArray(Structure s) {
List atoms = new ArrayList<>();
for (Chain c : s.getChains()) {
Atom[] chainAtoms = getRepresentativeAtomArray(c);
atoms.addAll(Arrays.asList(chainAtoms));
}
return atoms.toArray(new Atom[0]);
}
/**
* Return an Atom array of the main chain atoms: CA, C, N, O Any group that
* contains those atoms will be included, be it a standard aminoacid or not
*
* @param s
* the structure object
* @return an Atom[] array
*/
public static Atom[] getBackboneAtomArray(Structure s) {
List atoms = new ArrayList<>();
for (Chain c : s.getChains()) {
for (Group g : c.getAtomGroups()) {
if (g.hasAminoAtoms()) {
if (g.getType() == GroupType.NUCLEOTIDE) {
addNucleotideAndAminoAtoms(atoms, g, NUCLEOTIDE_BACKBONE_ATOMS);
} else {
addNucleotideAndAminoAtoms(atoms, g, AMINOACID_BACKBONE_ATOMS);
}
}
}
}
return atoms.toArray(new Atom[0]);
}
/**
* This method will be used to add the Nucleotide and Amino atoms to the backbone Atom arrays based on the pre-defined Atom names.
* @param atoms
* @param g
* @param atomNames
*/
private static void addNucleotideAndAminoAtoms(List atoms, Group g, Set atomNames) {
for (Atom a : g.getAtoms()) {
if (atomNames.contains(a.getName())) {
atoms.add(a);
}
}
}
/**
* Convert three character amino acid codes into single character e.g.
* convert CYS to C. Valid 3-letter codes will be those of the standard 20
* amino acids plus MSE, CSE, SEC, PYH, PYL (see the {@link #aminoAcids}
* map)
*
* @return the 1 letter code, or null if the given 3 letter code does not
* correspond to an amino acid code
* @param groupCode3
* a three character amino acid representation String
* @see #get1LetterCode(String)
*/
public static Character get1LetterCodeAmino(String groupCode3) {
return aminoAcids.get(groupCode3);
}
/**
* Convert a three letter amino acid or nucleotide code into a single
* character code. If the code does not correspond to an amino acid or
* nucleotide, returns {@link #UNKNOWN_GROUP_LABEL}.
*
* Returned null for nucleotides prior to version 4.0.1.
*
* @param groupCode3
* three letter representation
* @return The 1-letter abbreviation
*/
public static Character get1LetterCode(String groupCode3) {
Character code1;
// is it a standard amino acid ?
code1 = get1LetterCodeAmino(groupCode3);
if (code1 == null) {
// hm groupCode3 is not standard
// perhaps it is a nucleotide?
groupCode3 = groupCode3.trim();
if (isNucleotide(groupCode3)) {
code1 = nucleotides30.get(groupCode3);
if (code1 == null) {
code1 = nucleotides23.get(groupCode3);
}
if (code1 == null) {
code1 = UNKNOWN_GROUP_LABEL;
}
} else {
// does not seem to be so let's assume it is
// nonstandard aminoacid and label it "X"
// logger.warning("unknown group name "+groupCode3 );
code1 = UNKNOWN_GROUP_LABEL;
}
}
return code1;
}
/**
* Test if the three-letter code of an ATOM entry corresponds to a
* nucleotide or to an aminoacid.
*
* @param groupCode3
* 3-character code for a group.
*
*/
public static boolean isNucleotide(String groupCode3) {
String code = groupCode3.trim();
return nucleotides30.containsKey(code)
|| nucleotides23.containsKey(code);
}
public static String convertAtomsToSeq(Atom[] atoms) {
StringBuilder buf = new StringBuilder();
Group prevGroup = null;
for (Atom a : atoms) {
Group g = a.getGroup();
if (prevGroup != null) {
if (prevGroup.equals(g)) {
// we add each group only once.
continue;
}
}
String code3 = g.getPDBName();
Character code1 = get1LetterCodeAmino(code3);
if (code1 == null)
code1 = UNKNOWN_GROUP_LABEL;
buf.append(code1);
prevGroup = g;
}
return buf.toString();
}
/**
* Get a group represented by a ResidueNumber.
*
* @param struc
* a {@link Structure}
* @param pdbResNum
* a {@link ResidueNumber}
* @return a group in the structure that is represented by the pdbResNum.
* @throws StructureException
* if the group cannot be found.
*/
public static Group getGroupByPDBResidueNumber(Structure struc,
ResidueNumber pdbResNum) throws StructureException {
if (struc == null || pdbResNum == null) {
throw new IllegalArgumentException("Null argument(s).");
}
Chain chain = struc.getPolyChainByPDB(pdbResNum.getChainName());
return chain.getGroupByPDB(pdbResNum);
}
/**
* Returns the set of intra-chain contacts for the given chain for given
* atom names, i.e. the contact map. Uses a spatial hashing algorithm that
* speeds up the calculation without need of full distance matrix. The
* parsing mode {@link FileParsingParameters#setAlignSeqRes(boolean)} needs
* to be set to true for this to work.
*
* @param chain
* @param atomNames
* the array with atom names to be used. Beware: CA will do both
* C-alphas an Calciums if null all non-H atoms of non-hetatoms
* will be used
* @param cutoff
* @return
*/
public static AtomContactSet getAtomsInContact(Chain chain,
String[] atomNames, double cutoff) {
Grid grid = new Grid(cutoff);
Atom[] atoms = null;
if (atomNames == null) {
atoms = getAllNonHAtomArray(chain, false);
} else {
atoms = getAtomArray(chain, atomNames);
}
// If tha
if(atoms.length==0){
logger.warn("No atoms found for buidling grid!");
return new AtomContactSet(cutoff);
}
grid.addAtoms(atoms);
return grid.getAtomContacts();
}
/**
* Returns the set of intra-chain contacts for the given chain for all non-H
* atoms of non-hetatoms, i.e. the contact map. Uses a spatial hashing
* algorithm that speeds up the calculation without need of full distance
* matrix. The parsing mode
* {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
* true for this to work.
*
* @param chain
* @param cutoff
* @return
*/
public static AtomContactSet getAtomsInContact(Chain chain, double cutoff) {
return getAtomsInContact(chain, (String[]) null, cutoff);
}
/**
* Returns the set of intra-chain contacts for the given chain for C-alpha
* atoms (including non-standard aminoacids appearing as HETATM groups),
* i.e. the contact map. Uses a spatial hashing algorithm that speeds up
* the calculation without need of full distance matrix. The parsing mode
* {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
* true for this to work.
*
* @param chain
* @param cutoff
* @return
* @see #getRepresentativeAtomsInContact(Chain, double)
*/
public static AtomContactSet getAtomsCAInContact(Chain chain, double cutoff) {
Grid grid = new Grid(cutoff);
Atom[] atoms = getAtomCAArray(chain);
grid.addAtoms(atoms);
return grid.getAtomContacts();
}
/**
* Returns the set of intra-chain contacts for the given chain for C-alpha
* or C3' atoms (including non-standard aminoacids appearing as HETATM
* groups), i.e. the contact map. Uses a spatial hashing algorithm that
* speeds up the calculation without need of full distance matrix.
*
* @param chain
* @param cutoff
* @return
* @since Biojava 4.1.0
*/
public static AtomContactSet getRepresentativeAtomsInContact(Chain chain,
double cutoff) {
Grid grid = new Grid(cutoff);
Atom[] atoms = getRepresentativeAtomArray(chain);
grid.addAtoms(atoms);
return grid.getAtomContacts();
}
/**
* Returns the set of inter-chain contacts between the two given chains for
* the given atom names. Uses a spatial hashing algorithm that speeds up
* the calculation without need of full distance matrix. The parsing mode
* {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
* true for this to work.
*
* @param chain1
* @param chain2
* @param atomNames
* the array with atom names to be used. For Calphas use {"CA"},
* if null all non-H atoms will be used. Note HET atoms are
* ignored unless this parameter is null.
* @param cutoff
* @param hetAtoms
* if true HET atoms are included, if false they are not
* @return
*/
public static AtomContactSet getAtomsInContact(Chain chain1, Chain chain2,
String[] atomNames, double cutoff, boolean hetAtoms) {
Grid grid = new Grid(cutoff);
Atom[] atoms1 = null;
Atom[] atoms2 = null;
if (atomNames == null) {
atoms1 = getAllNonHAtomArray(chain1, hetAtoms);
atoms2 = getAllNonHAtomArray(chain2, hetAtoms);
} else {
atoms1 = getAtomArray(chain1, atomNames);
atoms2 = getAtomArray(chain2, atomNames);
}
grid.addAtoms(atoms1, atoms2);
return grid.getAtomContacts();
}
/**
* Returns the set of inter-chain contacts between the two given chains for
* all non-H atoms. Uses a spatial hashing algorithm that speeds up the
* calculation without need of full distance matrix. The parsing mode
* {@link FileParsingParameters#setAlignSeqRes(boolean)} needs to be set to
* true for this to work.
*
* @param chain1
* @param chain2
* @param cutoff
* @param hetAtoms
* if true HET atoms are included, if false they are not
* @return
*/
public static AtomContactSet getAtomsInContact(Chain chain1, Chain chain2,
double cutoff, boolean hetAtoms) {
return getAtomsInContact(chain1, chain2, null, cutoff, hetAtoms);
}
/**
* Finds Groups in {@code structure} that contain at least one Atom that is
* within {@code radius} Angstroms of {@code centroid}.
*
* @param structure
* The structure from which to find Groups
* @param centroid
* The centroid of the shell
* @param excludeResidues
* A list of ResidueNumbers to exclude
* @param radius
* The radius from {@code centroid}, in Angstroms
* @param includeWater
* Whether to include Groups whose only atoms are water
* @param useAverageDistance
* When set to true, distances are the arithmetic mean (1-norm)
* of the distances of atoms that belong to the group and that
* are within the shell; otherwise, distances are the minimum of
* these values
* @return A map of Groups within (or partially within) the shell, to their
* distances in Angstroms
*/
public static Map getGroupDistancesWithinShell(
Structure structure, Atom centroid,
Set excludeResidues, double radius,
boolean includeWater, boolean useAverageDistance) {
// for speed, we avoid calculating square roots
radius = radius * radius;
Map distances = new HashMap<>();
// we only need this if we're averaging distances
// note that we can't use group.getAtoms().size() because some the
// group's atoms be outside the shell
Map atomCounts = new HashMap<>();
for (Chain chain : structure.getChains()) {
groupLoop: for (Group chainGroup : chain.getAtomGroups()) {
// exclude water
if (!includeWater && chainGroup.isWater())
continue;
// check blacklist of residue numbers
for (ResidueNumber rn : excludeResidues) {
if (rn.equals(chainGroup.getResidueNumber()))
continue groupLoop;
}
for (Atom testAtom : chainGroup.getAtoms()) {
// use getDistanceFast as we are doing a lot of comparisons
double dist = Calc.getDistanceFast(centroid, testAtom);
// if we're the shell
if (dist <= radius) {
if (!distances.containsKey(chainGroup))
distances.put(chainGroup, Double.POSITIVE_INFINITY);
if (useAverageDistance) {
// sum the distance; we'll divide by the total
// number later
// here, we CANNOT use fastDistance (distance
// squared) because we want the arithmetic mean
distances.put(chainGroup, distances.get(chainGroup)
+ Math.sqrt(dist));
if (!atomCounts.containsKey(chainGroup))
atomCounts.put(chainGroup, 0);
atomCounts.put(chainGroup,
atomCounts.get(chainGroup) + 1);
} else {
// take the minimum distance among all atoms of
// chainGroup
// note that we can't break here because we might
// find a smaller distance
if (dist < distances.get(chainGroup)) {
distances.put(chainGroup, dist);
}
}
}
}
}
}
if (useAverageDistance) {
for (Map.Entry entry : distances.entrySet()) {
int count = atomCounts.get(entry.getKey());
distances.put(entry.getKey(), entry.getValue() / count);
}
} else {
// in this case we used getDistanceFast
distances.replaceAll((k, v) -> Math.sqrt(v));
}
return distances;
}
public static Set getGroupsWithinShell(Structure structure,
Atom atom, Set excludeResidues, double distance,
boolean includeWater) {
// square the distance to use as a comparison against getDistanceFast
// which returns the square of a distance.
distance = distance * distance;
Set returnSet = new LinkedHashSet<>();
for (Chain chain : structure.getChains()) {
groupLoop: for (Group chainGroup : chain.getAtomGroups()) {
if (!includeWater && chainGroup.isWater())
continue;
for (ResidueNumber rn : excludeResidues) {
if (rn.equals(chainGroup.getResidueNumber()))
continue groupLoop;
}
for (Atom atomB : chainGroup.getAtoms()) {
// use getDistanceFast as we are doing a lot of comparisons
double dist = Calc.getDistanceFast(atom, atomB);
if (dist <= distance) {
returnSet.add(chainGroup);
break;
}
}
}
}
return returnSet;
}
/**
*
* Returns a Set of Groups in a structure within the distance specified of a
* given group.
*
*
* Updated 18-Sep-2015 sroughley to return a Set so only a unique set of
* Groups returned
*
* @param structure
* The structure to work with
* @param group
* The 'query' group
* @param distance
* The cutoff distance
* @param includeWater
* Should water residues be included in the output?
* @return {@link LinkedHashSet} of {@link Group}s within at least one atom
* with {@code distance} of at least one atom in {@code group}
*/
public static Set getGroupsWithinShell(Structure structure,
Group group, double distance, boolean includeWater) {
Set returnList = new LinkedHashSet<>();
Set excludeGroups = new HashSet<>();
excludeGroups.add(group.getResidueNumber());
for (Atom atom : group.getAtoms()) {
Set set = getGroupsWithinShell(structure, atom,
excludeGroups, distance, includeWater);
returnList.addAll(set);
}
return returnList;
}
/**
* Remove all models from a Structure and keep only the first
*
* @param s
* original Structure
* @return a structure that contains only the first model
* @since 3.0.5
*/
public static Structure removeModels(Structure s) {
if (s.nrModels() == 1)
return s;
Structure n = new StructureImpl();
// go through whole substructure and clone ...
// copy structure data
n.setPdbId(s.getPdbId());
n.setName(s.getName());
// TODO: do deep copying of data!
n.setPDBHeader(s.getPDBHeader());
n.setDBRefs(s.getDBRefs());
n.setSites(s.getSites());
n.setChains(s.getModel(0));
return n;
}
/**
* Removes all polymeric and solvent groups from a list of groups
*
*/
public static List filterLigands(List allGroups) {
List groups = new ArrayList<>();
for (Group g : allGroups) {
if ( g.isPolymeric())
continue;
if (!g.isWater()) {
groups.add(g);
}
}
return groups;
}
/**
* Short version of {@link #getStructure(String, PDBFileParser, AtomCache)}
* which creates new parsers when needed
*
* @param name
* @return
* @throws IOException
* @throws StructureException
*/
public static Structure getStructure(String name) throws IOException,
StructureException {
return StructureTools.getStructure(name, null, null);
}
/**
* Flexibly get a structure from an input String. The intent of this method
* is to allow any reasonable string which could refer to a structure to be
* correctly parsed. The following are currently supported:
*
* - Filename (if name refers to an existing file)
*
- PDB ID
*
- SCOP domains
*
- PDP domains
*
- Residue ranges
*
- Other formats supported by AtomCache
*
*
* @param name
* Some reference to the protein structure
* @param parser
* A clean PDBFileParser to use if it is a file. If null, a
* PDBFileParser will be instantiated if needed.
* @param cache
* An AtomCache to use if the structure can be fetched from the
* PDB. If null, a AtomCache will be instantiated if needed.
* @return A Structure object
* @throws IOException
* if name is an existing file, but doesn't parse correctly
* @throws StructureException
* if the format is unknown, or if AtomCache throws an
* exception.
*/
public static Structure getStructure(String name, PDBFileParser parser,
AtomCache cache) throws IOException, StructureException {
File f = new File(FileDownloadUtils.expandUserHome(name));
if (f.exists()) {
if (parser == null) {
parser = new PDBFileParser();
}
InputStream inStream = new FileInputStream(f);
return parser.parsePDBFile(inStream);
} else {
if (cache == null) {
cache = new AtomCache();
}
return cache.getStructure(name);
}
}
/**
* Cleans up the structure's alternate location (altloc) groups. All alternate location groups should have all atoms (except
* in the case of microheterogenity) or when a deuterium exists.
* Ensure that all the alt loc groups have all the atoms in the main group.
* @param structure The Structure to be cleaned up
*/
public static void cleanUpAltLocs(Structure structure) {
for (int i =0; i< structure.nrModels() ; i++){
for (Chain chain : structure.getModel(i)) {
for (Group group : chain.getAtomGroups()) {
for (Group altLocGroup : group.getAltLocs()) {
for ( Atom groupAtom : group.getAtoms()) {
// If this alt loc doesn't have this atom
if (! altLocGroup.hasAtom(groupAtom.getName())) {
// Fix for microheterogenity
if (altLocGroup.getPDBName().equals(group.getPDBName())) {
// If it's a Hydrogen then we check for it's Deuterated brother
if(!hasDeuteratedEquiv(groupAtom, altLocGroup)){
altLocGroup.addAtom(groupAtom);
}
}
}
}
}
}
}
}
}
/**
* Check to see if an Deuterated atom has a non deuterated brother in the group.
* @param atom the input atom that is putatively deuterium
* @param currentGroup the group the atom is in
* @return true if the atom is deuterated and it's hydrogen equive exists.
*/
public static boolean hasNonDeuteratedEquiv(Atom atom, Group currentGroup) {
// If it's deuterated and has a non-deuterated brother
return atom.getElement() == Element.D && currentGroup.hasAtom(replaceFirstChar(atom.getName(), 'D', 'H'));
}
/**
* Check to see if a Hydrogen has a Deuterated brother in the group.
* @param atom the input atom that is putatively hydorgen
* @param currentGroup the group the atom is in
* @return true if the atom is hydrogen and it's Deuterium equiv exists.
*/
public static boolean hasDeuteratedEquiv(Atom atom, Group currentGroup) {
// If it's hydrogen and has a deuterated brother
return atom.getElement() == Element.H && currentGroup.hasAtom(replaceFirstChar(atom.getName(), 'H', 'D'));
}
private static String replaceFirstChar(String name, char c, char d) {
if(name.charAt(0)==c){
return name.replaceFirst(String.valueOf(c), String.valueOf(d));
}
return name;
}
/**
* Remove all atoms but the representative atoms (C alphas or phosphates) from the given structure.
* @param structure the structure
* @since 5.4.0
*/
public static void reduceToRepresentativeAtoms(Structure structure) {
for (int modelIdx = 0; modelIdx atoms = g.getAtoms();
if (g.isAminoAcid()) {
atoms.removeIf(a->!a.getName().equals(CA_ATOM_NAME));
} else if (g.isNucleotide()) {
atoms.removeIf(a->!a.getName().equals(NUCLEOTIDE_REPRESENTATIVE));
}
// else we keep all other atoms. We are concerned only about aminoacids and nucleotides that make up the bulk of the structures
}
}
}
}
}