All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.biojava.nbio.structure.align.util.AlignmentTools Maven / Gradle / Ivy

There is a newer version: 7.1.3
Show newest version
/*
 *                    BioJava development code
 *
 * This code may be freely distributed and modified under the
 * terms of the GNU Lesser General Public Licence.  This should
 * be distributed with the code.  If you do not have a copy,
 * see:
 *
 *      http://www.gnu.org/copyleft/lesser.html
 *
 * Copyright for this code is held jointly by the individual
 * authors.  These should be listed in @author doc comments.
 *
 * For more information on the BioJava project and its aims,
 * or to join the biojava-l mailing list, visit the home page
 * at:
 *
 *      http://www.biojava.org/
 *
 */
package org.biojava.nbio.structure.align.util;

import org.biojava.nbio.structure.*;
import org.biojava.nbio.structure.align.AFPTwister;
import org.biojava.nbio.structure.align.ce.CECalculator;
import org.biojava.nbio.structure.align.fatcat.FatCatFlexible;
import org.biojava.nbio.structure.align.fatcat.FatCatRigid;
import org.biojava.nbio.structure.align.model.AFPChain;
import org.biojava.nbio.structure.align.xml.AFPChainXMLParser;
import org.biojava.nbio.structure.geometry.Matrices;
import org.biojava.nbio.structure.geometry.SuperPositions;
import org.biojava.nbio.structure.jama.Matrix;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.io.Writer;
import java.util.*;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.vecmath.Matrix4d;

/**
 * Methods for analyzing and manipulating AFPChains and for
 * other pairwise alignment utilities. 

* Current methods: replace optimal alignment, create new AFPChain, * format conversion, update superposition, etc. * * @author Spencer Bliven * @author Aleix Lafita * */ public class AlignmentTools { private static final Logger logger = LoggerFactory.getLogger(AlignmentTools.class); public static boolean debug = false; /** * Checks that the alignment given by afpChain is sequential. This means * that the residue indices of both proteins increase monotonically as * a function of the alignment position (ie both proteins are sorted). * * This will return false for circularly permuted alignments or other * non-topological alignments. It will also return false for cases where * the alignment itself is sequential but it is not stored in the afpChain * in a sorted manner. * * Since algorithms which create non-sequential alignments split the * alignment into multiple blocks, some computational time can be saved * by only checking block boundaries for sequentiality. Setting * checkWithinBlocks to true makes this function slower, * but detects AFPChains with non-sequential blocks. * * Note that this method should give the same results as * {@link AFPChain#isSequentialAlignment()}. However, the AFPChain version * relies on the StructureAlignment algorithm correctly setting this * parameter, which is sadly not always the case. * * @param afpChain An alignment * @param checkWithinBlocks Indicates whether individual blocks should be * checked for sequentiality * @return True if the alignment is sequential. */ public static boolean isSequentialAlignment(AFPChain afpChain, boolean checkWithinBlocks) { int[][][] optAln = afpChain.getOptAln(); int[] alnLen = afpChain.getOptLen(); int blocks = afpChain.getBlockNum(); if(blocks < 1) return true; //trivial case if ( alnLen[0] < 1) return true; // Check that blocks are sequential if(checkWithinBlocks) { for(int block = 0; blockFor example,

	 * 1234
	 * 5678
* becomes
	 * 1->5
	 * 2->6
	 * 3->7
	 * 4->8
* * @param afpChain An alignment * @return A mapping from aligned residues of protein 1 to their partners in protein 2. * @throws StructureException If afpChain is not one-to-one */ public static Map alignmentAsMap(AFPChain afpChain) throws StructureException { Map map = new HashMap<>(); if( afpChain.getAlnLength() < 1 ) { return map; } int[][][] optAln = afpChain.getOptAln(); int[] optLen = afpChain.getOptLen(); for(int block = 0; block < afpChain.getBlockNum(); block++) { for(int pos = 0; pos < optLen[block]; pos++) { int res1 = optAln[block][0][pos]; int res2 = optAln[block][1][pos]; if(map.containsKey(res1)) { throw new StructureException(String.format("Residue %d aligned to both %d and %d.", res1,map.get(res1),res2)); } map.put(res1,res2); } } return map; } /** * Applies an alignment k times. Eg if alignmentMap defines function f(x), * this returns a function f^k(x)=f(f(...f(x)...)). * * @param * @param alignmentMap The input function, as a map (see {@link AlignmentTools#alignmentAsMap(AFPChain)}) * @param k The number of times to apply the alignment * @return A new alignment. If the input function is not automorphic * (one-to-one), then some inputs may map to null, indicating that the * function is undefined for that input. */ public static Map applyAlignment(Map alignmentMap, int k) { return applyAlignment(alignmentMap, new IdentityMap(), k); } /** * Applies an alignment k times. Eg if alignmentMap defines function f(x), * this returns a function f^k(x)=f(f(...f(x)...)). * * To allow for functions with different domains and codomains, the identity * function allows converting back in a reasonable way. For instance, if * alignmentMap represented an alignment between two proteins with different * numbering schemes, the identity function could calculate the offset * between residue numbers, eg I(x) = x-offset. * * When an identity function is provided, the returned function calculates * f^k(x) = f(I( f(I( ... f(x) ... )) )). * * @param * @param * @param alignmentMap The input function, as a map (see {@link AlignmentTools#alignmentAsMap(AFPChain)}) * @param identity An identity-like function providing the isomorphism between * the codomain of alignmentMap (of type ) and the domain (type ). * @param k The number of times to apply the alignment * @return A new alignment. If the input function is not automorphic * (one-to-one), then some inputs may map to null, indicating that the * function is undefined for that input. */ public static Map applyAlignment(Map alignmentMap, Map identity, int k) { // This implementation simply applies the map k times. // If k were large, it would be more efficient to do this recursively, // (eg f^4 = (f^2)^2) but k will usually be small. if(k<0) throw new IllegalArgumentException("k must be positive"); if(k==1) { return new HashMap<>(alignmentMap); } // Convert to lists to establish a fixed order List preimage = new ArrayList<>(alignmentMap.keySet()); // currently unmodified List image = new ArrayList<>(preimage); for(int n=1;n imageMap = new HashMap<>(alignmentMap.size()); //TODO handle nulls consistently. // assure that all the residues in the domain are valid keys /* for(int i=0;iX). * *

This method should only be used in cases where the two proteins * aligned have identical numbering, as for self-alignments. See * {@link #getSymmetryOrder(AFPChain, int, float)} for a way to guess * the sequential correspondence between two proteins. * * @param alignment * @param maxSymmetry * @param minimumMetricChange * @return */ public static int getSymmetryOrder(Map alignment, final int maxSymmetry, final float minimumMetricChange) { return getSymmetryOrder(alignment, new IdentityMap(), maxSymmetry, minimumMetricChange); } /** * Tries to detect symmetry in an alignment. * *

Conceptually, an alignment is a function f:A->B between two sets of * integers. The function may have simple topology (meaning that if two * elements of A are close, then their images in B will also be close), or * may have more complex topology (such as a circular permutation). This * function checks alignment against a reference function * identity, which should have simple topology. It then tries to * determine the symmetry order of alignment relative to * identity, up to a maximum order of maxSymmetry. * * *

Details
* Considers the offset (in number of residues) which a residue moves * after undergoing n alternating transforms by alignment and * identity. If n corresponds to the intrinsic order of the alignment, * this will be small. This algorithm tries increasing values of n * and looks for abrupt decreases in the root mean squared offset. * If none are found at n<=maxSymmetry, the alignment is reported as * non-symmetric. * * @param alignment The alignment to test for symmetry * @param identity An alignment with simple topology which approximates * the sequential relationship between the two proteins. Should map in the * reverse direction from alignment. * @param maxSymmetry Maximum symmetry to consider. High values increase * the calculation time and can lead to overfitting. * @param minimumMetricChange Percent decrease in root mean squared offsets * in order to declare symmetry. 0.4f seems to work well for CeSymm. * @return The order of symmetry of alignment, or 1 if no order <= * maxSymmetry is found. * * @see IdentityMap For a simple identity function */ public static int getSymmetryOrder(Map alignment, Map identity, final int maxSymmetry, final float minimumMetricChange) { List preimage = new ArrayList<>(alignment.keySet()); // currently unmodified List image = new ArrayList<>(preimage); int bestSymmetry = 1; double bestMetric = Double.POSITIVE_INFINITY; //lower is better boolean foundSymmetry = false; if(debug) { logger.trace("Symm\tPos\tDelta"); } for(int n=1;n<=maxSymmetry;n++) { int deltasSq = 0; int numDeltas = 0; // apply alignment for(int i=0;iUses {@link #getSymmetryOrder(Map alignment, Map identity, int, float)} * to determine the the symmetry order. For the identity alignment, sorts * the aligned residues of each protein sequentially, then defines the ith * residues of each protein to be equivalent. * *

Note that the selection of the identity alignment here is very * naive, and only works for proteins with very good coverage. Wherever * possible, it is better to construct an identity function explicitly * from a sequence alignment (or use an {@link IdentityMap} for internally * symmetric proteins) and use {@link #getSymmetryOrder(Map, Map, int, float)}. */ public static int getSymmetryOrder(AFPChain afpChain, int maxSymmetry, float minimumMetricChange) throws StructureException { // alignment comes from the afpChain alignment Map alignment = AlignmentTools.alignmentAsMap(afpChain); // Now construct identity to map aligned residues in sequential order Map identity = guessSequentialAlignment(alignment, true); return AlignmentTools.getSymmetryOrder(alignment, identity, maxSymmetry, minimumMetricChange); } /** * Takes a potentially non-sequential alignment and guesses a sequential * version of it. Residues from each structure are sorted sequentially and * then compared directly. * *

The results of this method are consistent with what one might expect * from an identity function, and are therefore useful with * {@link #getSymmetryOrder(Map, Map identity, int, float)}. *

    *
  • Perfect self-alignments will have the same pre-image and image, * so will map X->X
  • *
  • Gaps and alignment errors will cause errors in the resulting map, * but only locally. Errors do not propagate through the whole * alignment.
  • *
* *

Example:

* A non sequential alignment, represented schematically as *
	 * 12456789
	 * 78912345
* would result in a map *
	 * 12456789
	 * 12345789
* @param alignment The non-sequential input alignment * @param inverseAlignment If false, map from structure1 to structure2. If * true, generate the inverse of that map. * @return A mapping from sequential residues of one protein to those of the other * @throws IllegalArgumentException if the input alignment is not one-to-one. */ public static Map guessSequentialAlignment( Map alignment, boolean inverseAlignment) { Map identity = new HashMap<>(); SortedSet aligned1 = new TreeSet<>(); SortedSet aligned2 = new TreeSet<>(); for(Entry pair : alignment.entrySet()) { aligned1.add(pair.getKey()); if( !aligned2.add(pair.getValue()) ) throw new IllegalArgumentException("Alignment is not one-to-one for residue "+pair.getValue()+" of the second structure."); } Iterator it1 = aligned1.iterator(); Iterator it2 = aligned2.iterator(); while(it1.hasNext()) { if(inverseAlignment) { // 2->1 identity.put(it2.next(),it1.next()); } else { // 1->2 identity.put(it1.next(),it2.next()); } } return identity; } /** * Retrieves the optimum alignment from an AFPChain and returns it as a * java collection. The result is indexed in the same way as * {@link AFPChain#getOptAln()}, but has the correct size(). *
	 * List>> aln = getOptAlnAsList(AFPChain afpChain);
	 * aln.get(blockNum).get(structureNum={0,1}).get(pos)
* * @param afpChain * @return */ public static List>> getOptAlnAsList(AFPChain afpChain) { int[][][] optAln = afpChain.getOptAln(); int[] optLen = afpChain.getOptLen(); List>> blocks = new ArrayList<>(afpChain.getBlockNum()); for(int blockNum=0;blockNum align1 = new ArrayList<>(optLen[blockNum]); List align2 = new ArrayList<>(optLen[blockNum]); for(int pos=0;pos> block = new ArrayList<>(2); block.add(align1); block.add(align2); blocks.add(block); } return blocks; } /** * A Map can be viewed as a function from K to V. This class represents * the identity function. Getting a value results in the value itself. * *

The class is a bit inconsistent when representing its contents. On * the one hand, containsKey(key) is true for all objects. However, * attempting to iterate through the values returns an empty set. * * @author Spencer Bliven * * @param */ public static class IdentityMap extends AbstractMap { public IdentityMap() {} /** * @param key * @return the key * @throws ClassCastException if key is not of type K */ @SuppressWarnings("unchecked") @Override public K get(Object key) { return (K)key; } /** * Always returns the empty set */ @Override public Set> entrySet() { return Collections.emptySet(); } @Override public boolean containsKey(Object key) { return true; } } /** * Fundamentally, an alignment is just a list of aligned residues in each * protein. This method converts two lists of ResidueNumbers into an * AFPChain. * *

Parameters are filled with defaults (often null) or sometimes * calculated. * *

For a way to modify the alignment of an existing AFPChain, see * {@link AlignmentTools#replaceOptAln(AFPChain, Atom[], Atom[], Map)} * @param ca1 CA atoms of the first protein * @param ca2 CA atoms of the second protein * @param aligned1 A list of aligned residues from the first protein * @param aligned2 A list of aligned residues from the second protein. * Must be the same length as aligned1. * @return An AFPChain representing the alignment. Many properties may be * null or another default. * @throws StructureException if an error occured during superposition * @throws IllegalArgumentException if aligned1 and aligned2 have different * lengths * @see AlignmentTools#replaceOptAln(AFPChain, Atom[], Atom[], Map) */ public static AFPChain createAFPChain(Atom[] ca1, Atom[] ca2, ResidueNumber[] aligned1, ResidueNumber[] aligned2 ) throws StructureException { //input validation int alnLen = aligned1.length; if(alnLen != aligned2.length) { throw new IllegalArgumentException("Alignment lengths are not equal"); } AFPChain a = new AFPChain(AFPChain.UNKNOWN_ALGORITHM); try { a.setName1(ca1[0].getGroup().getChain().getStructure().getName()); if(ca2[0].getGroup().getChain().getStructure() != null) { // common case for cloned ca2 a.setName2(ca2[0].getGroup().getChain().getStructure().getName()); } } catch(Exception e) { // One of the structures wasn't fully created. Ignore } a.setBlockNum(1); a.setCa1Length(ca1.length); a.setCa2Length(ca2.length); a.setOptLength(alnLen); a.setOptLen(new int[] {alnLen}); Matrix[] ms = new Matrix[a.getBlockNum()]; a.setBlockRotationMatrix(ms); Atom[] blockShiftVector = new Atom[a.getBlockNum()]; a.setBlockShiftVector(blockShiftVector); String[][][] pdbAln = new String[1][2][alnLen]; for(int i=0;i newBlkLen = new ArrayList<>(); boolean blockChanged = false; for(int blk=0;blk blocks = new ArrayList<>( newBlkLen.size() ); int oldBlk = 0; int pos = 0; for(int blkLen : newBlkLen) { if( blkLen == optLen[oldBlk] ) { assert(pos == 0); //should be the whole block // Use the old block blocks.add(optAln[oldBlk]); } else { int[][] newBlock = new int[2][blkLen]; assert( pos+blkLen <= optLen[oldBlk] ); // don't overrun block for(int i=0; iParameters are filled with defaults (often null) or sometimes * calculated. * *

For a way to create a new AFPChain, see * {@link AlignmentTools#createAFPChain(Atom[], Atom[], ResidueNumber[], ResidueNumber[])} * * @param afpChain The alignment to be modified * @param alignment The new alignment, as a Map * @throws StructureException if an error occurred during superposition * @see AlignmentTools#createAFPChain(Atom[], Atom[], ResidueNumber[], ResidueNumber[]) */ public static AFPChain replaceOptAln(AFPChain afpChain, Atom[] ca1, Atom[] ca2, Map alignment) throws StructureException { // Determine block lengths // Sort ca1 indices, then start a new block whenever ca2 indices aren't // increasing monotonically. Integer[] res1 = alignment.keySet().toArray(new Integer[0]); Arrays.sort(res1); List blockLens = new ArrayList<>(2); int optLength = 0; Integer lastRes = alignment.get(res1[0]); int blkLen = lastRes==null?0:1; for(int i=1;i 0) System.arraycopy (oldArray,0,newArray,0,preserveLength); return newArray; } /** * Print an alignment map in a concise representation. Edges are given * as two numbers separated by '>'. They are chained together where possible, * or separated by spaces where disjoint or branched. * *

Note that more concise representations may be possible.

* * Examples: *
  • 1>2>3>1
  • *
  • 1>2>3>2 4>3
  • * * @param alignment The input function, as a map (see {@link AlignmentTools#alignmentAsMap(AFPChain)}) * @param identity An identity-like function providing the isomorphism between * the codomain of alignment (of type ) and the domain (type ). * @return */ public static String toConciseAlignmentString(Map alignment, Map identity) { // Clone input to prevent changes Map alig = new HashMap<>(alignment); // Generate inverse alignment Map> inverse = new HashMap<>(); for(Entry e: alig.entrySet()) { S val = identity.get(e.getValue()); if( inverse.containsKey(val) ) { List l = inverse.get(val); l.add(e.getKey()); } else { List l = new ArrayList<>(); l.add(e.getKey()); inverse.put(val,l); } } StringBuilder str = new StringBuilder(); while(!alig.isEmpty()){ // Pick an edge and work upstream to a root or cycle S seedNode = alig.keySet().iterator().next(); S node = seedNode; if( inverse.containsKey(seedNode)) { node = inverse.get(seedNode).iterator().next(); while( node != seedNode && inverse.containsKey(node)) { node = inverse.get(node).iterator().next(); } } // Now work downstream, deleting edges as we go seedNode = node; str.append(node); while(alig.containsKey(node)) { S lastNode = node; node = identity.get( alig.get(lastNode) ); // Output str.append('>'); str.append(node); // Remove edge alig.remove(lastNode); List inv = inverse.get(node); if(inv.size() > 1) { inv.remove(node); } else { inverse.remove(node); } } if(!alig.isEmpty()) { str.append(' '); } } return str.toString(); } /** * @see #toConciseAlignmentString(Map, Map) */ public static String toConciseAlignmentString(Map alignment) { return toConciseAlignmentString(alignment, new IdentityMap()); } /** * @see #toConciseAlignmentString(Map, Map) */ public static Map fromConciseAlignmentString(String string) { Map map = new HashMap<>(); boolean matches = true; while (matches) { Pattern pattern = Pattern.compile("(\\d+)>(\\d+)"); Matcher matcher = pattern.matcher(string); matches = matcher.find(); if (matches) { Integer from = Integer.parseInt(matcher.group(1)); Integer to = Integer.parseInt(matcher.group(2)); map.put(from, to); string = string.substring(matcher.end(1) + 1); } } return map; } /** * Method that calculates the number of gaps in each subunit block of an optimal AFP alignment. * * INPUT: an optimal alignment in the format int[][][]. * OUTPUT: an int[] array of length containing the gaps in each block as int[block]. */ public static int[] calculateBlockGap(int[][][] optAln){ //Initialize the array to be returned int [] blockGap = new int[optAln.length]; //Loop for every block and look in both chains for non-contiguous residues. for (int i=0; i last1+1 || optAln[i][1][j] > last2+1){ gaps++; last1 = optAln[i][0][j]; last2 = optAln[i][1][j]; } //Otherwise just set the last position to the current one else{ last1 = optAln[i][0][j]; last2 = optAln[i][1][j]; } } } blockGap[i] = gaps; } return blockGap; } /** * Creates a simple interaction format (SIF) file for an alignment. * * The SIF file can be read by network software (eg Cytoscape) to analyze * alignments as graphs. * * This function creates a graph with residues as nodes and two types of edges: * 1. backbone edges, which connect adjacent residues in the aligned protein * 2. alignment edges, which connect aligned residues * * @param out Stream to write to * @param afpChain alignment to write * @param ca1 First protein, used to generate node names * @param ca2 Second protein, used to generate node names * @param backboneInteraction Two-letter string used to identify backbone edges * @param alignmentInteraction Two-letter string used to identify alignment edges * @throws IOException */ public static void alignmentToSIF(Writer out,AFPChain afpChain, Atom[] ca1,Atom[] ca2, String backboneInteraction, String alignmentInteraction) throws IOException { //out.write("Res1\tInteraction\tRes2\n"); String name1 = afpChain.getName1(); String name2 = afpChain.getName2(); if(name1==null) name1=""; else name1+=":"; if(name2==null) name2=""; else name2+=":"; // Print alignment edges int nblocks = afpChain.getBlockNum(); int[] blockLen = afpChain.getOptLen(); int[][][] optAlign = afpChain.getOptAln(); for(int b=0;b0 && ca1[0].getGroup()!=null && ca2[0].getGroup()!=null && !ca1[0].getGroup().getResidueNumber().equals(ca2[0].getGroup().getResidueNumber()) ) ) { rn = ca2[0].getGroup().getResidueNumber(); last = name2+rn.getChainName()+rn.toString(); for(int i=1;i getAlignedModel(Atom[] ca){ List model = new ArrayList<>(); for ( Atom a: ca){ Group g = a.getGroup(); Chain parentC = g.getChain(); Chain newChain = null; for ( Chain c : model) { if ( c.getId().equals(parentC.getId())){ newChain = c; break; } } if ( newChain == null){ newChain = new ChainImpl(); newChain.setId(parentC.getId()); model.add(newChain); } newChain.addGroup(g); } return model; } /** Get an artifical Structure containing both chains. * Does NOT rotate anything * @param ca1 * @param ca2 * @return a structure object containing two models, one for each set of Atoms. * @throws StructureException */ public static final Structure getAlignedStructure(Atom[] ca1, Atom[] ca2) throws StructureException{ /* Previous implementation commented Structure s = new StructureImpl(); Listmodel1 = getAlignedModel(ca1); Listmodel2 = getAlignedModel(ca2); s.addModel(model1); s.addModel(model2); return s;*/ Structure s = new StructureImpl(); Listmodel1 = getAlignedModel(ca1); s.addModel(model1); List model2 = getAlignedModel(ca2); s.addModel(model2); return s; } /** Rotate the Atoms/Groups so they are aligned for the 3D visualisation * * @param afpChain * @param ca1 * @param ca2 * @return an array of Groups that are transformed for 3D display * @throws StructureException */ public static Group[] prepareGroupsForDisplay(AFPChain afpChain, Atom[] ca1, Atom[] ca2) throws StructureException{ if ( afpChain.getBlockRotationMatrix().length == 0 ) { // probably the alignment is too short! System.err.println("No rotation matrix found to rotate 2nd structure!"); afpChain.setBlockRotationMatrix(new Matrix[]{Matrix.identity(3, 3)}); afpChain.setBlockShiftVector(new Atom[]{new AtomImpl()}); } // List of groups to be rotated according to the alignment Group[] twistedGroups = new Group[ ca2.length]; //int blockNum = afpChain.getBlockNum(); int i = -1; // List of groups from the structure not included in ca2 (e.g. ligands) // Will be rotated according to first block List hetatms2 = StructureTools.getUnalignedGroups(ca2); if ( (afpChain.getAlgorithmName().equals(FatCatRigid.algorithmName) ) || (afpChain.getAlgorithmName().equals(FatCatFlexible.algorithmName) ) ){ for (Atom a: ca2){ i++; twistedGroups[i]=a.getGroup(); } twistedGroups = AFPTwister.twistOptimized(afpChain, ca1, ca2); //} else if (( blockNum == 1 ) || (afpChain.getAlgorithmName().equals(CeCPMain.algorithmName))) { } else { Matrix m = afpChain.getBlockRotationMatrix()[ 0]; Atom shift = afpChain.getBlockShiftVector() [ 0 ]; shiftCA2(afpChain, ca2, m,shift, twistedGroups); } if ( afpChain.getBlockNum() > 0){ // Superimpose ligands relative to the first block if( hetatms2.size() > 0 ) { if ( afpChain.getBlockRotationMatrix().length > 0 ) { Matrix m1 = afpChain.getBlockRotationMatrix()[0]; //m1.print(3,3); Atom vector1 = afpChain.getBlockShiftVector()[0]; //System.out.println("shift vector:" + vector1); for ( Group g : hetatms2){ Calc.rotate(g, m1); Calc.shift(g,vector1); } } } } return twistedGroups; } /** only shift CA positions. * */ public static void shiftCA2(AFPChain afpChain, Atom[] ca2, Matrix m, Atom shift, Group[] twistedGroups) { int i = -1; for (Atom a: ca2){ i++; Group g = a.getGroup(); Calc.rotate(g,m); Calc.shift(g, shift); if (g.hasAltLoc()){ for (Group alt: g.getAltLocs()){ for (Atom alta : alt.getAtoms()){ if ( g.getAtoms().contains(alta)) continue; Calc.rotate(alta,m); Calc.shift(alta,shift); } } } twistedGroups[i]=g; } } /** * Fill the aligned Atom arrays with the equivalent residues in the afpChain. * @param afpChain * @param ca1 * @param ca2 * @param ca1aligned * @param ca2aligned */ public static void fillAlignedAtomArrays(AFPChain afpChain, Atom[] ca1, Atom[] ca2, Atom[] ca1aligned, Atom[] ca2aligned) { int pos=0; int[] blockLens = afpChain.getOptLen(); int[][][] optAln = afpChain.getOptAln(); assert(afpChain.getBlockNum() <= optAln.length); for (int block=0; block < afpChain.getBlockNum(); block++) { for(int i=0;i maxDistance) { maxBlock = b; maxPos = p; maxDistance = distance; } } } return deleteColumn(afpChain, ca1, ca2, maxBlock, maxPos); } /** * Delete an alignment position from the original alignment object. * * @param afpChain * original alignment, will be modified * @param ca1 * atom array, will not be modified * @param ca2 * atom array, will not be modified * @param block * block of the alignment position * @param pos * position index in the block * @return the original alignment, with the alignment position removed * @throws StructureException */ public static AFPChain deleteColumn(AFPChain afpChain, Atom[] ca1, Atom[] ca2, int block, int pos) throws StructureException { // Check validity of the inputs if (afpChain.getBlockNum() <= block) { throw new IndexOutOfBoundsException(String.format( "Block index requested (%d) is higher than the total number of AFPChain blocks (%d).", block, afpChain.getBlockNum())); } if (afpChain.getOptAln()[block][0].length <= pos) { throw new IndexOutOfBoundsException(String.format( "Position index requested (%d) is higher than the total number of aligned position in the AFPChain block (%d).", block, afpChain.getBlockSize()[block])); } int[][][] optAln = afpChain.getOptAln(); int[] newPos0 = new int[optAln[block][0].length - 1]; int[] newPos1 = new int[optAln[block][1].length - 1]; int position = 0; for (int p = 0; p < optAln[block][0].length; p++) { if (p == pos) continue; newPos0[position] = optAln[block][0][p]; newPos1[position] = optAln[block][1][p]; position++; } optAln[block][0] = newPos0; optAln[block][1] = newPos1; return AlignmentTools.replaceOptAln(optAln, afpChain, ca1, ca2); } }