org.biojava.nbio.structure.jama.Matrix Maven / Gradle / Ivy
Show all versions of biojava-structure Show documentation
/*
* BioJava development code
*
* This code may be freely distributed and modified under the
* terms of the GNU Lesser General Public Licence. This should
* be distributed with the code. If you do not have a copy,
* see:
*
* http://www.gnu.org/copyleft/lesser.html
*
* Copyright for this code is held jointly by the individual
* authors. These should be listed in @author doc comments.
*
* For more information on the BioJava project and its aims,
* or to join the biojava-l mailing list, visit the home page
* at:
*
* http://www.biojava.org/
*
*/
/* Derived from the MathWorks and NIST implementation, which was released into
* the public domain.
*
* http://math.nist.gov/javanumerics/jama/
*/
package org.biojava.nbio.structure.jama;
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.StringWriter;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.util.Locale;
/**
* Jama = Java Matrix class.
*
* The Java Matrix Class provides the fundamental operations of numerical
* linear algebra. Various constructors create Matrices from two dimensional
* arrays of double precision floating point numbers. Various "gets" and
* "sets" provide access to submatrices and matrix elements. Several methods
* implement basic matrix arithmetic, including matrix addition and
* multiplication, matrix norms, and element-by-element array operations.
* Methods for reading and printing matrices are also included. All the
* operations in this version of the Matrix Class involve real matrices.
* Complex matrices may be handled in a future version.
*
* Five fundamental matrix decompositions, which consist of pairs or triples
* of matrices, permutation vectors, and the like, produce results in five
* decomposition classes. These decompositions are accessed by the Matrix
* class to compute solutions of simultaneous linear equations, determinants,
* inverses and other matrix functions. The five decompositions are:
*
* - Cholesky Decomposition of symmetric, positive definite matrices.
*
- LU Decomposition of rectangular matrices.
*
- QR Decomposition of rectangular matrices.
*
- Singular Value Decomposition of rectangular matrices.
*
- Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices.
*
*
* - Example of use:
*
*
- Solve a linear system A x = b and compute the residual norm, ||b - A x||.
*
* double[][] vals = {{1.,2.,3},{4.,5.,6.},{7.,8.,10.}};
* Matrix A = new Matrix(vals);
* Matrix b = Matrix.random(3,1);
* Matrix x = A.solve(b);
* Matrix r = A.times(x).minus(b);
* double rnorm = r.normInf();
*
*
*
* @author The MathWorks, Inc. and the National Institute of Standards and Technology.
* @version 5 August 1998
*/
public class Matrix implements Cloneable, java.io.Serializable {
static final long serialVersionUID = 8492558293015348719l;
/* ------------------------
Class variables
* ------------------------ */
/** Array for internal storage of elements.
@serial internal array storage.
*/
private double[][] A;
/** Row and column dimensions.
@serial row dimension.
@serial column dimension.
*/
private int m, n;
/* ------------------------
Constructors
* ------------------------ */
/** Construct an m-by-n matrix of zeros.
@param m Number of rows.
@param n Number of colums.
*/
public Matrix (int m, int n) {
this.m = m;
this.n = n;
A = new double[m][n];
}
/** Construct an m-by-n constant matrix.
@param m Number of rows.
@param n Number of colums.
@param s Fill the matrix with this scalar value.
*/
public Matrix (int m, int n, double s) {
this.m = m;
this.n = n;
A = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = s;
}
}
}
/** Construct a matrix from a 2-D array.
@param A Two-dimensional array of doubles.
@exception IllegalArgumentException All rows must have the same length
@see #constructWithCopy
*/
public Matrix (double[][] A) {
m = A.length;
n = A[0].length;
for (int i = 0; i < m; i++) {
if (A[i].length != n) {
throw new IllegalArgumentException("All rows must have the same length.");
}
}
this.A = A;
}
/** Construct a matrix quickly without checking arguments.
@param A Two-dimensional array of doubles.
@param m Number of rows.
@param n Number of colums.
*/
public Matrix (double[][] A, int m, int n) {
this.A = A;
this.m = m;
this.n = n;
}
/** Construct a matrix from a one-dimensional packed array
@param vals One-dimensional array of doubles, packed by columns (ala Fortran).
@param m Number of rows.
@exception IllegalArgumentException Array length must be a multiple of m.
*/
public Matrix (double[] vals, int m) {
this.m = m;
n = (m != 0 ? vals.length/m : 0);
if (m*n != vals.length) {
throw new IllegalArgumentException("Array length must be a multiple of m.");
}
A = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = vals[i+j*m];
}
}
}
/* ------------------------
Public Methods
* ------------------------ */
/** Construct a matrix from a copy of a 2-D array.
@param A Two-dimensional array of doubles.
@exception IllegalArgumentException All rows must have the same length
@return a Matrix
*/
public static Matrix constructWithCopy(double[][] A) {
int m = A.length;
int n = A[0].length;
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
if (A[i].length != n) {
throw new IllegalArgumentException
("All rows must have the same length.");
}
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j];
}
}
return X;
}
/** Make a deep copy of a matrix
* @return a identical copy of the Matrix
*/
public Matrix copy () {
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j];
}
}
return X;
}
/** Clone the Matrix object.
*/
@Override
public Object clone () {
return this.copy();
}
/** Access the internal two-dimensional array.
@return Pointer to the two-dimensional array of matrix elements.
*/
public double[][] getArray () {
return A;
}
/** Copy the internal two-dimensional array.
@return Two-dimensional array copy of matrix elements.
*/
public double[][] getArrayCopy () {
double[][] C = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j];
}
}
return C;
}
/** Make a one-dimensional column packed copy of the internal array.
@return Matrix elements packed in a one-dimensional array by columns.
*/
public double[] getColumnPackedCopy () {
double[] vals = new double[m*n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
vals[i+j*m] = A[i][j];
}
}
return vals;
}
/** Make a one-dimensional row packed copy of the internal array.
@return Matrix elements packed in a one-dimensional array by rows.
*/
public double[] getRowPackedCopy () {
double[] vals = new double[m*n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
vals[i*n+j] = A[i][j];
}
}
return vals;
}
/** Get row dimension.
@return m, the number of rows.
*/
public int getRowDimension () {
return m;
}
/** Get column dimension.
@return n, the number of columns.
*/
public int getColumnDimension () {
return n;
}
/** Get a single element.
@param i Row index.
@param j Column index.
@return A(i,j)
@exception ArrayIndexOutOfBoundsException
*/
public double get (int i, int j) {
return A[i][j];
}
/** Get a submatrix.
@param i0 Initial row index
@param i1 Final row index
@param j0 Initial column index
@param j1 Final column index
@return A(i0:i1,j0:j1)
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix (int i0, int i1, int j0, int j1) {
Matrix X = new Matrix(i1-i0+1,j1-j0+1);
double[][] B = X.getArray();
try {
for (int i = i0; i <= i1; i++) {
for (int j = j0; j <= j1; j++) {
B[i-i0][j-j0] = A[i][j];
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/** Get a submatrix.
@param r Array of row indices.
@param c Array of column indices.
@return A(r(:),c(:))
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix (int[] r, int[] c) {
Matrix X = new Matrix(r.length,c.length);
double[][] B = X.getArray();
try {
for (int i = 0; i < r.length; i++) {
for (int j = 0; j < c.length; j++) {
B[i][j] = A[r[i]][c[j]];
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/** Get a submatrix.
@param i0 Initial row index
@param i1 Final row index
@param c Array of column indices.
@return A(i0:i1,c(:))
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix (int i0, int i1, int[] c) {
Matrix X = new Matrix(i1-i0+1,c.length);
double[][] B = X.getArray();
try {
for (int i = i0; i <= i1; i++) {
for (int j = 0; j < c.length; j++) {
B[i-i0][j] = A[i][c[j]];
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/** Get a submatrix.
@param r Array of row indices.
@param j0 Initial column index
@param j1 Final column index
@return A(r(:),j0:j1)
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix (int[] r, int j0, int j1) {
Matrix X = new Matrix(r.length,j1-j0+1);
double[][] B = X.getArray();
try {
for (int i = 0; i < r.length; i++) {
for (int j = j0; j <= j1; j++) {
B[i][j-j0] = A[r[i]][j];
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/** Set a single element.
@param i Row index.
@param j Column index.
@param s A(i,j).
@exception ArrayIndexOutOfBoundsException
*/
public void set (int i, int j, double s) {
A[i][j] = s;
}
/** Set a submatrix.
@param i0 Initial row index
@param i1 Final row index
@param j0 Initial column index
@param j1 Final column index
@param X A(i0:i1,j0:j1)
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix (int i0, int i1, int j0, int j1, Matrix X) {
try {
for (int i = i0; i <= i1; i++) {
for (int j = j0; j <= j1; j++) {
A[i][j] = X.get(i-i0,j-j0);
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/** Set a submatrix.
@param r Array of row indices.
@param c Array of column indices.
@param X A(r(:),c(:))
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix (int[] r, int[] c, Matrix X) {
try {
for (int i = 0; i < r.length; i++) {
for (int j = 0; j < c.length; j++) {
A[r[i]][c[j]] = X.get(i,j);
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/** Set a submatrix.
@param r Array of row indices.
@param j0 Initial column index
@param j1 Final column index
@param X A(r(:),j0:j1)
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix (int[] r, int j0, int j1, Matrix X) {
try {
for (int i = 0; i < r.length; i++) {
for (int j = j0; j <= j1; j++) {
A[r[i]][j] = X.get(i,j-j0);
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/** Set a submatrix.
@param i0 Initial row index
@param i1 Final row index
@param c Array of column indices.
@param X A(i0:i1,c(:))
@exception ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix (int i0, int i1, int[] c, Matrix X) {
try {
for (int i = i0; i <= i1; i++) {
for (int j = 0; j < c.length; j++) {
A[i][c[j]] = X.get(i-i0,j);
}
}
} catch(ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/** Matrix transpose.
@return A'
*/
public Matrix transpose () {
Matrix X = new Matrix(n,m);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[j][i] = A[i][j];
}
}
return X;
}
/** One norm
@return maximum column sum.
*/
public double norm1 () {
double f = 0;
for (int j = 0; j < n; j++) {
double s = 0;
for (int i = 0; i < m; i++) {
s += Math.abs(A[i][j]);
}
f = Math.max(f,s);
}
return f;
}
/** Two norm
@return maximum singular value.
*/
public double norm2 () {
return (new SingularValueDecomposition(this).norm2());
}
/** Infinity norm
@return maximum row sum.
*/
public double normInf () {
double f = 0;
for (int i = 0; i < m; i++) {
double s = 0;
for (int j = 0; j < n; j++) {
s += Math.abs(A[i][j]);
}
f = Math.max(f,s);
}
return f;
}
/** Frobenius norm
@return sqrt of sum of squares of all elements.
*/
public double normF () {
double f = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
f = Maths.hypot(f,A[i][j]);
}
}
return f;
}
/** Unary minus
@return -A
*/
public Matrix uminus () {
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = -A[i][j];
}
}
return X;
}
/** C = A + B
@param B another matrix
@return A + B
*/
public Matrix plus (Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] + B.A[i][j];
}
}
return X;
}
/** A = A + B
@param B another matrix
@return A + B
*/
public Matrix plusEquals (Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] + B.A[i][j];
}
}
return this;
}
/** C = A - B
@param B another matrix
@return A - B
*/
public Matrix minus (Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] - B.A[i][j];
}
}
return X;
}
/** A = A - B
@param B another matrix
@return A - B
*/
public Matrix minusEquals (Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] - B.A[i][j];
}
}
return this;
}
/** Element-by-element multiplication, C = A.*B
@param B another matrix
@return A.*B
*/
public Matrix arrayTimes (Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] * B.A[i][j];
}
}
return X;
}
/** Element-by-element multiplication in place, A = A.*B
@param B another matrix
@return A.*B
*/
public Matrix arrayTimesEquals (Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] * B.A[i][j];
}
}
return this;
}
/** Element-by-element right division, C = A./B
@param B another matrix
@return A./B
*/
public Matrix arrayRightDivide (Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] / B.A[i][j];
}
}
return X;
}
/** Element-by-element right division in place, A = A./B
@param B another matrix
@return A./B
*/
public Matrix arrayRightDivideEquals (Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] / B.A[i][j];
}
}
return this;
}
/** Element-by-element left division, C = A.\B
@param B another matrix
@return A.\B
*/
public Matrix arrayLeftDivide (Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = B.A[i][j] / A[i][j];
}
}
return X;
}
/** Element-by-element left division in place, A = A.\B
@param B another matrix
@return A.\B
*/
public Matrix arrayLeftDivideEquals (Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = B.A[i][j] / A[i][j];
}
}
return this;
}
/** Multiply a matrix by a scalar, C = s*A
@param s scalar
@return s*A
*/
public Matrix times (double s) {
Matrix X = new Matrix(m,n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = s*A[i][j];
}
}
return X;
}
/** Multiply a matrix by a scalar in place, A = s*A
@param s scalar
@return replace A by s*A
*/
public Matrix timesEquals (double s) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = s*A[i][j];
}
}
return this;
}
/** Linear algebraic matrix multiplication, A * B
@param B another matrix
@return Matrix product, A * B
@exception IllegalArgumentException Matrix inner dimensions must agree.
*/
public Matrix times (Matrix B) {
if (B.m != n) {
throw new IllegalArgumentException("Matrix inner dimensions must agree.");
}
Matrix X = new Matrix(m,B.n);
double[][] C = X.getArray();
double[] Bcolj = new double[n];
for (int j = 0; j < B.n; j++) {
for (int k = 0; k < n; k++) {
Bcolj[k] = B.A[k][j];
}
for (int i = 0; i < m; i++) {
double[] Arowi = A[i];
double s = 0;
for (int k = 0; k < n; k++) {
s += Arowi[k]*Bcolj[k];
}
C[i][j] = s;
}
}
return X;
}
/** LU Decomposition
@return LUDecomposition
@see LUDecomposition
*/
public LUDecomposition lu () {
return new LUDecomposition(this);
}
/** QR Decomposition
@return QRDecomposition
@see QRDecomposition
*/
public QRDecomposition qr () {
return new QRDecomposition(this);
}
/** Cholesky Decomposition
@return CholeskyDecomposition
@see CholeskyDecomposition
*/
public CholeskyDecomposition chol () {
return new CholeskyDecomposition(this);
}
/** Singular Value Decomposition
@return SingularValueDecomposition
@see SingularValueDecomposition
*/
public SingularValueDecomposition svd () {
return new SingularValueDecomposition(this);
}
/** Eigenvalue Decomposition
@return EigenvalueDecomposition
@see EigenvalueDecomposition
*/
public EigenvalueDecomposition eig () {
return new EigenvalueDecomposition(this);
}
/** Solve A*X = B
@param B right hand side
@return solution if A is square, least squares solution otherwise
*/
public Matrix solve (Matrix B) {
return (m == n ? (new LUDecomposition(this)).solve(B) :
(new QRDecomposition(this)).solve(B));
}
/** Solve X*A = B, which is also A'*X' = B'
@param B right hand side
@return solution if A is square, least squares solution otherwise.
*/
public Matrix solveTranspose (Matrix B) {
return transpose().solve(B.transpose());
}
/** Matrix inverse or pseudoinverse
@return inverse(A) if A is square, pseudoinverse otherwise.
*/
public Matrix inverse () {
return solve(identity(m,m));
}
/** Matrix determinant
@return determinant
*/
public double det () {
return new LUDecomposition(this).det();
}
/** Matrix rank
@return effective numerical rank, obtained from SVD.
*/
public int rank () {
return new SingularValueDecomposition(this).rank();
}
/** Matrix condition (2 norm)
@return ratio of largest to smallest singular value.
*/
public double cond () {
return new SingularValueDecomposition(this).cond();
}
/** Matrix trace.
@return sum of the diagonal elements.
*/
public double trace () {
double t = 0;
for (int i = 0; i < Math.min(m,n); i++) {
t += A[i][i];
}
return t;
}
/** Generate matrix with random elements
@param m Number of rows.
@param n Number of colums.
@return An m-by-n matrix with uniformly distributed random elements.
*/
public static Matrix random (int m, int n) {
Matrix A = new Matrix(m,n);
double[][] X = A.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = Math.random();
}
}
return A;
}
/** Generate identity matrix
@param m Number of rows.
@param n Number of colums.
@return An m-by-n matrix with ones on the diagonal and zeros elsewhere.
*/
public static Matrix identity (int m, int n) {
Matrix A = new Matrix(m,n);
double[][] X = A.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = (i == j ? 1.0 : 0.0);
}
}
return A;
}
@Override
public String toString(){
StringWriter writer = new StringWriter();
PrintWriter printWriter = new PrintWriter(writer);
print(printWriter,getColumnDimension(),3);
return writer.toString();
}
/** Print the matrix to stdout. Line the elements up in columns
* with a Fortran-like 'Fw.d' style format.
@param w Column width.
@param d Number of digits after the decimal.
*/
public void print (int w, int d) {
print(new PrintWriter(System.out,true),w,d); }
/** Print the matrix to the output stream. Line the elements up in
* columns with a Fortran-like 'Fw.d' style format.
@param output Output stream.
@param w Column width.
@param d Number of digits after the decimal.
*/
public void print (PrintWriter output, int w, int d) {
DecimalFormat format = new DecimalFormat();
format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US));
format.setMinimumIntegerDigits(1);
format.setMaximumFractionDigits(d);
format.setMinimumFractionDigits(d);
format.setGroupingUsed(false);
print(output,format,w+2);
}
/** Print the matrix to stdout. Line the elements up in columns.
* Use the format object, and right justify within columns of width
* characters.
* Note that is the matrix is to be read back in, you probably will want
* to use a NumberFormat that is set to US Locale.
@param format A Formatting object for individual elements.
@param width Field width for each column.
@see java.text.DecimalFormat#setDecimalFormatSymbols
*/
public void print (NumberFormat format, int width) {
print(new PrintWriter(System.out,true),format,width); }
// DecimalFormat is a little disappointing coming from Fortran or C's printf.
// Since it doesn't pad on the left, the elements will come out different
// widths. Consequently, we'll pass the desired column width in as an
// argument and do the extra padding ourselves.
/** Print the matrix to the output stream. Line the elements up in columns.
* Use the format object, and right justify within columns of width
* characters.
* Note that is the matrix is to be read back in, you probably will want
* to use a NumberFormat that is set to US Locale.
@param output the output stream.
@param format A formatting object to format the matrix elements
@param width Column width.
@see java.text.DecimalFormat#setDecimalFormatSymbols
*/
public void print (PrintWriter output, NumberFormat format, int width) {
output.println(); // start on new line.
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
String s = format.format(A[i][j]); // format the number
int padding = Math.max(1,width-s.length()); // At _least_ 1 space
for (int k = 0; k < padding; k++)
output.print(' ');
output.print(s);
}
output.println();
}
//output.println(); // end with blank line.
}
/** Read a matrix from a stream. The format is the same the print method,
* so printed matrices can be read back in (provided they were printed using
* US Locale). Elements are separated by
* whitespace, all the elements for each row appear on a single line,
* the last row is followed by a blank line.
@param input the input stream.
@return a Matrix
@throws java.io.IOException
*/
@SuppressWarnings({ "rawtypes", "unchecked" })
public static Matrix read (BufferedReader input) throws java.io.IOException {
StreamTokenizer tokenizer= new StreamTokenizer(input);
// Although StreamTokenizer will parse numbers, it doesn't recognize
// scientific notation (E or D); however, Double.valueOf does.
// The strategy here is to disable StreamTokenizer's number parsing.
// We'll only get whitespace delimited words, EOL's and EOF's.
// These words should all be numbers, for Double.valueOf to parse.
tokenizer.resetSyntax();
tokenizer.wordChars(0,255);
tokenizer.whitespaceChars(0, ' ');
tokenizer.eolIsSignificant(true);
java.util.Vector v = new java.util.Vector();
// Ignore initial empty lines
while (tokenizer.nextToken() == StreamTokenizer.TT_EOL);
if (tokenizer.ttype == StreamTokenizer.TT_EOF)
throw new java.io.IOException("Unexpected EOF on matrix read.");
do {
v.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st row.
} while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);
int n = v.size(); // Now we've got the number of columns!
double[] row = new double[n];
for (int j=0; j= n) throw new java.io.IOException
("Row " + v.size() + " is too long.");
row[j++] = Double.parseDouble(tokenizer.sval);
} while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);
if (j < n) throw new java.io.IOException
("Row " + v.size() + " is too short.");
}
int m = v.size(); // Now we've got the number of rows.
double[][] A = new double[m][];
v.copyInto(A); // copy the rows out of the vector
return new Matrix(A);
}
/* ------------------------
Private Methods
* ------------------------ */
/** Check if size(A) == size(B) **/
private void checkMatrixDimensions (Matrix B) {
if (B.m != m || B.n != n) {
throw new IllegalArgumentException("Matrix dimensions must agree.");
}
}
}