All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.biojava.nbio.structure.symmetry.internal.CeSymmIterative Maven / Gradle / Ivy

There is a newer version: 7.1.3
Show newest version
/*
 *                    BioJava development code
 *
 * This code may be freely distributed and modified under the
 * terms of the GNU Lesser General Public Licence.  This should
 * be distributed with the code.  If you do not have a copy,
 * see:
 *
 *      http://www.gnu.org/copyleft/lesser.html
 *
 * Copyright for this code is held jointly by the individual
 * authors.  These should be listed in @author doc comments.
 *
 * For more information on the BioJava project and its aims,
 * or to join the biojava-l mailing list, visit the home page
 * at:
 *
 *      http://www.biojava.org/
 *
 */
package org.biojava.nbio.structure.symmetry.internal;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Set;

import javax.vecmath.Matrix4d;

import org.biojava.nbio.structure.Atom;
import org.biojava.nbio.structure.StructureException;
import org.biojava.nbio.structure.StructureIdentifier;
import org.biojava.nbio.structure.align.multiple.Block;
import org.biojava.nbio.structure.align.multiple.BlockImpl;
import org.biojava.nbio.structure.align.multiple.BlockSet;
import org.biojava.nbio.structure.align.multiple.BlockSetImpl;
import org.biojava.nbio.structure.align.multiple.MultipleAlignment;
import org.biojava.nbio.structure.align.multiple.MultipleAlignmentImpl;
import org.biojava.nbio.structure.align.multiple.util.MultipleAlignmentScorer;
import org.biojava.nbio.structure.secstruc.SecStrucElement;
import org.biojava.nbio.structure.secstruc.SecStrucTools;
import org.biojava.nbio.structure.secstruc.SecStrucType;
import org.biojava.nbio.structure.symmetry.internal.CESymmParameters.RefineMethod;
import org.biojava.nbio.structure.symmetry.internal.CESymmParameters.SymmetryType;
import org.biojava.nbio.structure.symmetry.utils.SymmetryTools;
import org.jgrapht.Graph;
import org.jgrapht.alg.connectivity.ConnectivityInspector;
import org.jgrapht.graph.DefaultEdge;
import org.jgrapht.graph.SimpleGraph;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Iterative version of CeSymm that aims at identifying all symmetry axis of a
 * structure.
 * 

* Works in the following way: *

    *
  • Run CeSymm on the original structure. *
  • Calculate the symmetric unit boundaries. *
  • Run CeSymm on one of the symmetric units to find further symmetries. *
  • Repeat the last two steps until no more significant results are found. *
  • Map back all residues in a multiple alignment of the repeats. *
* * * @author Aleix Lafita * @since 4.1.1 * */ public class CeSymmIterative { private static final Logger logger = LoggerFactory .getLogger(CeSymmIterative.class); private CESymmParameters params; private Graph alignGraph; // cumulative private List levels; // symmetry at each level /** * For the iterative algorithm to work properly the refinement and * optimization options should be turned on, because the alignment has to be * consistent at every recursive step. * * @param param * CeSymm parameters, make sure they are cloned */ public CeSymmIterative(CESymmParameters param) { params = param; alignGraph = new SimpleGraph(DefaultEdge.class); levels = new ArrayList<>(); } /** * This method uses iteratively CeSymm to calculate all symmetries in the * input array of atoms and organize them in a multiple alignment of the * repeats. * * @param atoms * atoms * @return CeSymmResult * * @throws StructureException */ public CeSymmResult execute(Atom[] atoms) throws StructureException { // First iterate through all levels and then reconstruct all repeats iterate(atoms); return reconstructSymmResult(atoms); } /** * This method runs iteratively the analysis of one level of symmetry with * CeSymm on the input Atom array until no more symmetries exist. * * @param atoms * representative Atom array of the Structure * @return true if any symmetry was found, false if asymmetric * @throws StructureException */ private void iterate(Atom[] atoms) throws StructureException { logger.debug("Starting new iteration..."); // Return if the Atom array is too short if ((atoms.length <= params.getWinSize() || atoms.length <= params.getMinCoreLength()) && !levels.isEmpty()) { logger.debug("Aborting iteration due to insufficient Atom array length: %d", atoms.length); return; } // Return if the maximum levels of symmetry have been reached if (params.getSymmLevels() > 0) { if (levels.size() == params.getSymmLevels()) return; } // Perform one level CeSymm alignment CeSymmResult result = CeSymm.analyzeLevel(atoms, params); if (params.getRefineMethod() == RefineMethod.NOT_REFINED || !result.isSignificant()) { if (levels.isEmpty()) levels.add(result); return; } // Generate the Atoms of one of the symmetric repeat Integer start = null; int it = 0; while (start == null) { start = result.getMultipleAlignment().getBlocks().get(0) .getAlignRes().get(0).get(it); it++; } Integer end = null; it = result.getMultipleAlignment().getBlocks().get(0).getAlignRes() .get(0).size() - 1; while (end == null) { end = result.getMultipleAlignment().getBlocks().get(0) .getAlignRes().get(0).get(it); it--; } Atom[] atomsR = Arrays.copyOfRange(atoms, start, end + 1); // Check the SSE requirement if (countHelixStrandSSE(atomsR) < params.getSSEThreshold()) { if (levels.isEmpty()) levels.add(result); return; } // If symmetric store the residue dependencies in alignment graph Block b = result.getMultipleAlignment().getBlock(0); for (int pos = 0; pos < b.length(); pos++) { for (int su = 0; su < b.size() - 1; su++) { Integer pos1 = b.getAlignRes().get(su).get(pos); Integer pos2 = b.getAlignRes().get(su + 1).get(pos); // Add edge from lower to higher positions if (pos1 != null && pos2 != null) { alignGraph.addVertex(pos1); alignGraph.addVertex(pos2); alignGraph.addEdge(pos1, pos2); } } } // Iterate further on those Atoms (of the first repeat only) levels.add(result); iterate(atomsR); } /** * After all the analysis iterations have finished, the final Result object * is reconstructed using the cumulative alignment graph. * * @param atoms * the original structure atoms * @return CeSymmResult reconstructed symmetry result * @throws StructureException */ private CeSymmResult reconstructSymmResult(Atom[] atoms) throws StructureException { // If one level, nothing to build or calculate if (levels.size() == 1) return levels.get(0); CeSymmResult result = new CeSymmResult(); result.setSelfAlignment(levels.get(0).getSelfAlignment()); result.setStructureId(levels.get(0).getStructureId()); result.setAtoms(levels.get(0).getAtoms()); result.setParams(levels.get(0).getParams()); // Initialize a new multiple alignment MultipleAlignment msa = new MultipleAlignmentImpl(); msa.getEnsemble().setAtomArrays(new ArrayList()); msa.getEnsemble().setStructureIdentifiers( new ArrayList()); msa.getEnsemble().setAlgorithmName(CeSymm.algorithmName); msa.getEnsemble().setVersion(CeSymm.version); BlockSet bs = new BlockSetImpl(msa); Block b = new BlockImpl(bs); b.setAlignRes(new ArrayList>()); // Calculate the connected groups of the alignment graph ConnectivityInspector inspector = new ConnectivityInspector( alignGraph); List> comps = inspector.connectedSets(); List groups = new ArrayList<>(comps.size()); for (Set comp : comps) groups.add(new ResidueGroup(comp)); // Calculate the total number of repeats int order = 1; for (CeSymmResult sr : levels) order *= sr.getMultipleAlignment().size(); for (int su = 0; su < order; su++) b.getAlignRes().add(new ArrayList()); // Construct the resulting MultipleAlignment from ResidueGroups for (ResidueGroup group : groups) { if (group.order() != order) continue; group.combineWith(b.getAlignRes()); } // The reconstruction failed, so the top level is returned if (b.length() == 0) return levels.get(0); for (int su = 0; su < order; su++) { Collections.sort(b.getAlignRes().get(su)); msa.getEnsemble().getAtomArrays().add(atoms); msa.getEnsemble().getStructureIdentifiers() .add(result.getStructureId()); } result.setMultipleAlignment(msa); result.setRefined(true); result.setNumRepeats(order); SymmetryAxes axes = recoverAxes(result); result.setAxes(axes); // Set the transformations and scores of the final alignment SymmetryTools .updateSymmetryTransformation(result.getAxes(), msa); double tmScore = MultipleAlignmentScorer.getAvgTMScore(msa) * msa.size(); double rmsd = MultipleAlignmentScorer.getRMSD(msa); msa.putScore(MultipleAlignmentScorer.AVGTM_SCORE, tmScore); msa.putScore(MultipleAlignmentScorer.RMSD, rmsd); return result; } /** * The symmetry axes of each level are recovered after the symmetry analysis * iterations have finished, using the stored MultipleAlignment at each * symmetry level. * @return SymmetryAxes */ private SymmetryAxes recoverAxes(CeSymmResult result) { SymmetryAxes axes = new SymmetryAxes(); for (int m = 0; m < levels.size(); m++) { MultipleAlignment align = levels.get(m).getMultipleAlignment(); Matrix4d axis = align.getBlockSet(0).getTransformations().get(1); SymmetryType type = levels.get(m).getAxes().getElementaryAxis(0).getSymmType(); int order = align.size(); axes.addAxis(axis, order, type); } return axes; } /** * Calculate the number of helix and strand SSE of a repeat. * * @param atoms * Atom array of the repeat found * @return int number of helix or strand SSE */ private static int countHelixStrandSSE(Atom[] atoms) { List sses = SecStrucTools .getSecStrucElements(SymmetryTools.getGroups(atoms)); int count = 0; //keep track of different helix types boolean helix = false; int hEnd = 0; for (SecStrucElement sse : sses) { SecStrucType t = sse.getType(); if (t.isBetaStrand()) { helix = false; count++; } else if (t.isHelixType()){ if (helix){ // If this helix is contiguous to the previous if (sse.getRange().getStart().getSeqNum() + 1 == hEnd) hEnd = sse.getRange().getEnd().getSeqNum(); else count++; } else count++; } else helix = false; } return count; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy