
org.biojava.nbio.structure.geometry.SuperPositionQCP Maven / Gradle / Ivy
Show all versions of biojava-structure Show documentation
/*
* BioJava development code
*
* This code may be freely distributed and modified under the
* terms of the GNU Lesser General Public Licence. This should
* be distributed with the code. If you do not have a copy,
* see:
*
* http://www.gnu.org/copyleft/lesser.html
*
* Copyright for this code is held jointly by the individual
* authors. These should be listed in @author doc comments.
*
* For more information on the BioJava project and its aims,
* or to join the biojava-l mailing list, visit the home page
* at:
*
* http://www.biojava.org/
*
*/
package org.biojava.nbio.structure.geometry;
import javax.vecmath.Matrix3d;
import javax.vecmath.Matrix4d;
import javax.vecmath.Point3d;
import javax.vecmath.Vector3d;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Implementation of the Quaternion-Based Characteristic Polynomial algorithm
* for RMSD and Superposition calculations.
*
* Usage:
*
* The input consists of 2 Point3d arrays of equal length. The input coordinates
* are not changed.
*
*
* Point3d[] x = ...
* Point3d[] y = ...
* SuperPositionQCP qcp = new SuperPositionQCP();
* qcp.set(x, y);
*
*
* or with weighting factors [0 - 1]]
*
*
* double[] weights = ...
* qcp.set(x, y, weights);
*
*
* For maximum efficiency, create a SuperPositionQCP object once and reuse it.
*
* A. Calculate rmsd only
*
*
* double rmsd = qcp.getRmsd();
*
*
* B. Calculate a 4x4 transformation (rotation and translation) matrix
*
*
* Matrix4d rottrans = qcp.getTransformationMatrix();
*
*
* C. Get transformated points (y superposed onto the reference x)
*
*
* Point3d[] ySuperposed = qcp.getTransformedCoordinates();
*
*
* Citations:
*
* Liu P, Agrafiotis DK, & Theobald DL (2011) Reply to comment on: "Fast
* determination of the optimal rotation matrix for macromolecular
* superpositions." Journal of Computational Chemistry 32(1):185-186.
* [http://dx.doi.org/10.1002/jcc.21606]
*
* Liu P, Agrafiotis DK, & Theobald DL (2010) "Fast determination of the optimal
* rotation matrix for macromolecular superpositions." Journal of Computational
* Chemistry 31(7):1561-1563. [http://dx.doi.org/10.1002/jcc.21439]
*
* Douglas L Theobald (2005) "Rapid calculation of RMSDs using a
* quaternion-based characteristic polynomial." Acta Crystallogr A
* 61(4):478-480. [http://dx.doi.org/10.1107/S0108767305015266 ]
*
* This is an adoption of the original C code QCProt 1.4 (2012, October 10) to
* Java. The original C source code is available from
* http://theobald.brandeis.edu/qcp/ and was developed by
*
* Douglas L. Theobald Department of Biochemistry MS 009 Brandeis University 415
* South St Waltham, MA 02453 USA
*
* Pu Liu Johnson & Johnson Pharmaceutical Research and Development, L.L.C. 665
* Stockton Drive Exton, PA 19341 USA
*
*
* @author Douglas L. Theobald (original C code)
* @author Pu Liu (original C code)
* @author Peter Rose (adopted to Java)
* @author Aleix Lafita (adopted to Java)
*/
public final class SuperPositionQCP extends SuperPositionAbstract {
private static final Logger logger = LoggerFactory.getLogger(SuperPositionQCP.class);
private double evec_prec = 1E-6;
private double eval_prec = 1E-11;
private Point3d[] x;
private Point3d[] y;
private double[] weight;
private double wsum;
private Point3d[] xref;
private Point3d[] yref;
private Point3d xtrans;
private Point3d ytrans;
private double e0;
private Matrix3d rotmat = new Matrix3d();
private Matrix4d transformation = new Matrix4d();
private double rmsd = 0;
private double Sxy, Sxz, Syx, Syz, Szx, Szy;
private double SxxpSyy, Szz, mxEigenV, SyzmSzy, SxzmSzx, SxymSyx;
private double SxxmSyy, SxypSyx, SxzpSzx;
private double Syy, Sxx, SyzpSzy;
private boolean rmsdCalculated = false;
private boolean transformationCalculated = false;
private boolean centered = false;
/**
* Default constructor for the quaternion based superposition algorithm.
*
* @param centered
* true if the point arrays are centered at the origin (faster),
* false otherwise
*/
public SuperPositionQCP(boolean centered) {
super(centered);
}
/**
* Constructor with option to set the precision values.
*
* @param centered
* true if the point arrays are centered at the origin (faster),
* false otherwise
* @param evec_prec
* required eigenvector precision
* @param eval_prec
* required eigenvalue precision
*/
public SuperPositionQCP(boolean centered, double evec_prec, double eval_prec) {
super(centered);
this.evec_prec = evec_prec;
this.eval_prec = eval_prec;
}
/**
* Sets the two input coordinate arrays. These input arrays must be of equal
* length. Input coordinates are not modified.
*
* @param x
* 3d points of reference coordinate set
* @param y
* 3d points of coordinate set for superposition
*/
private void set(Point3d[] x, Point3d[] y) {
this.x = x;
this.y = y;
rmsdCalculated = false;
transformationCalculated = false;
}
/**
* Sets the two input coordinate arrays and weight array. All input arrays
* must be of equal length. Input coordinates are not modified.
*
* @param x
* 3d points of reference coordinate set
* @param y
* 3d points of coordinate set for superposition
* @param weight
* a weight in the inclusive range [0,1] for each point
*/
private void set(Point3d[] x, Point3d[] y, double[] weight) {
this.x = x;
this.y = y;
this.weight = weight;
rmsdCalculated = false;
transformationCalculated = false;
}
/**
* Return the RMSD of the superposition of input coordinate set y onto x.
* Note, this is the fasted way to calculate an RMSD without actually
* superposing the two sets. The calculation is performed "lazy", meaning
* calculations are only performed if necessary.
*
* @return root mean square deviation for superposition of y onto x
*/
private double getRmsd() {
if (!rmsdCalculated) {
calcRmsd(x, y);
rmsdCalculated = true;
}
return rmsd;
}
/**
* Weighted superposition.
*
* @param fixed
* @param moved
* @param weight
* array of weigths for each equivalent point position
* @return
*/
public Matrix4d weightedSuperpose(Point3d[] fixed, Point3d[] moved, double[] weight) {
set(moved, fixed, weight);
getRotationMatrix();
if (!centered) {
calcTransformation();
} else {
transformation.set(rotmat);
}
return transformation;
}
private Matrix3d getRotationMatrix() {
getRmsd();
if (!transformationCalculated) {
calcRotationMatrix();
transformationCalculated = true;
}
return rotmat;
}
/**
* Calculates the RMSD value for superposition of y onto x. This requires
* the coordinates to be precentered.
*
* @param x
* 3d points of reference coordinate set
* @param y
* 3d points of coordinate set for superposition
*/
private void calcRmsd(Point3d[] x, Point3d[] y) {
if (centered) {
innerProduct(y, x);
} else {
// translate to origin
xref = CalcPoint.clonePoint3dArray(x);
xtrans = CalcPoint.centroid(xref);
logger.debug("x centroid: {}", xtrans);
xtrans.negate();
CalcPoint.translate(new Vector3d(xtrans), xref);
yref = CalcPoint.clonePoint3dArray(y);
ytrans = CalcPoint.centroid(yref);
logger.debug("y centroid: {}", ytrans);
ytrans.negate();
CalcPoint.translate(new Vector3d(ytrans), yref);
innerProduct(yref, xref);
}
calcRmsd(wsum);
}
/**
* Superposition coords2 onto coords1 -- in other words, coords2 is rotated,
* coords1 is held fixed
*/
private void calcTransformation() {
// transformation.set(rotmat,new Vector3d(0,0,0), 1);
transformation.set(rotmat);
// long t2 = System.nanoTime();
// System.out.println("create transformation: " + (t2-t1));
// System.out.println("m3d -> m4d");
// System.out.println(transformation);
// combine with x -> origin translation
Matrix4d trans = new Matrix4d();
trans.setIdentity();
trans.setTranslation(new Vector3d(xtrans));
transformation.mul(transformation, trans);
// System.out.println("setting xtrans");
// System.out.println(transformation);
// combine with origin -> y translation
ytrans.negate();
Matrix4d transInverse = new Matrix4d();
transInverse.setIdentity();
transInverse.setTranslation(new Vector3d(ytrans));
transformation.mul(transInverse, transformation);
// System.out.println("setting ytrans");
// System.out.println(transformation);
}
/**
* Calculates the inner product between two coordinate sets x and y
* (optionally weighted, if weights set through
* {@link #set(Point3d[], Point3d[], double[])}). It also calculates an
* upper bound of the most positive root of the key matrix.
* http://theobald.brandeis.edu/qcp/qcprot.c
*
* @param coords1
* @param coords2
* @return
*/
private void innerProduct(Point3d[] coords1, Point3d[] coords2) {
double x1, x2, y1, y2, z1, z2;
double g1 = 0.0, g2 = 0.0;
Sxx = 0;
Sxy = 0;
Sxz = 0;
Syx = 0;
Syy = 0;
Syz = 0;
Szx = 0;
Szy = 0;
Szz = 0;
if (weight != null) {
wsum = 0;
for (int i = 0; i < coords1.length; i++) {
wsum += weight[i];
x1 = weight[i] * coords1[i].x;
y1 = weight[i] * coords1[i].y;
z1 = weight[i] * coords1[i].z;
g1 += x1 * coords1[i].x + y1 * coords1[i].y + z1 * coords1[i].z;
x2 = coords2[i].x;
y2 = coords2[i].y;
z2 = coords2[i].z;
g2 += weight[i] * (x2 * x2 + y2 * y2 + z2 * z2);
Sxx += (x1 * x2);
Sxy += (x1 * y2);
Sxz += (x1 * z2);
Syx += (y1 * x2);
Syy += (y1 * y2);
Syz += (y1 * z2);
Szx += (z1 * x2);
Szy += (z1 * y2);
Szz += (z1 * z2);
}
} else {
for (int i = 0; i < coords1.length; i++) {
g1 += coords1[i].x * coords1[i].x + coords1[i].y * coords1[i].y + coords1[i].z * coords1[i].z;
g2 += coords2[i].x * coords2[i].x + coords2[i].y * coords2[i].y + coords2[i].z * coords2[i].z;
Sxx += coords1[i].x * coords2[i].x;
Sxy += coords1[i].x * coords2[i].y;
Sxz += coords1[i].x * coords2[i].z;
Syx += coords1[i].y * coords2[i].x;
Syy += coords1[i].y * coords2[i].y;
Syz += coords1[i].y * coords2[i].z;
Szx += coords1[i].z * coords2[i].x;
Szy += coords1[i].z * coords2[i].y;
Szz += coords1[i].z * coords2[i].z;
}
wsum = coords1.length;
}
e0 = (g1 + g2) * 0.5;
}
private int calcRmsd(double len) {
double Sxx2 = Sxx * Sxx;
double Syy2 = Syy * Syy;
double Szz2 = Szz * Szz;
double Sxy2 = Sxy * Sxy;
double Syz2 = Syz * Syz;
double Sxz2 = Sxz * Sxz;
double Syx2 = Syx * Syx;
double Szy2 = Szy * Szy;
double Szx2 = Szx * Szx;
double SyzSzymSyySzz2 = 2.0 * (Syz * Szy - Syy * Szz);
double Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2;
double c2 = -2.0 * (Sxx2 + Syy2 + Szz2 + Sxy2 + Syx2 + Sxz2 + Szx2 + Syz2 + Szy2);
double c1 = 8.0 * (Sxx * Syz * Szy + Syy * Szx * Sxz + Szz * Sxy * Syx - Sxx * Syy * Szz - Syz * Szx * Sxy
- Szy * Syx * Sxz);
SxzpSzx = Sxz + Szx;
SyzpSzy = Syz + Szy;
SxypSyx = Sxy + Syx;
SyzmSzy = Syz - Szy;
SxzmSzx = Sxz - Szx;
SxymSyx = Sxy - Syx;
SxxpSyy = Sxx + Syy;
SxxmSyy = Sxx - Syy;
double Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2;
double c0 = Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2
+ (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2)
+ (-(SxzpSzx) * (SyzmSzy) + (SxymSyx) * (SxxmSyy - Szz))
* (-(SxzmSzx) * (SyzpSzy) + (SxymSyx) * (SxxmSyy + Szz))
+ (-(SxzpSzx) * (SyzpSzy) - (SxypSyx) * (SxxpSyy - Szz))
* (-(SxzmSzx) * (SyzmSzy) - (SxypSyx) * (SxxpSyy + Szz))
+ (+(SxypSyx) * (SyzpSzy) + (SxzpSzx) * (SxxmSyy + Szz))
* (-(SxymSyx) * (SyzmSzy) + (SxzpSzx) * (SxxpSyy + Szz))
+ (+(SxypSyx) * (SyzmSzy) + (SxzmSzx) * (SxxmSyy - Szz))
* (-(SxymSyx) * (SyzpSzy) + (SxzmSzx) * (SxxpSyy - Szz));
mxEigenV = e0;
int i;
for (i = 1; i < 51; ++i) {
double oldg = mxEigenV;
double x2 = mxEigenV * mxEigenV;
double b = (x2 + c2) * mxEigenV;
double a = b + c1;
double delta = ((a * mxEigenV + c0) / (2.0 * x2 * mxEigenV + b + a));
mxEigenV -= delta;
if (Math.abs(mxEigenV - oldg) < Math.abs(eval_prec * mxEigenV))
break;
}
if (i == 50) {
logger.warn(String.format("More than %d iterations needed!", i));
} else {
logger.info(String.format("%d iterations needed!", i));
}
/*
* the fabs() is to guard against extremely small, but *negative*
* numbers due to floating point error
*/
rmsd = Math.sqrt(Math.abs(2.0 * (e0 - mxEigenV) / len));
return 1;
}
private int calcRotationMatrix() {
double a11 = SxxpSyy + Szz - mxEigenV;
double a12 = SyzmSzy;
double a13 = -SxzmSzx;
double a14 = SxymSyx;
double a21 = SyzmSzy;
double a22 = SxxmSyy - Szz - mxEigenV;
double a23 = SxypSyx;
double a24 = SxzpSzx;
double a31 = a13;
double a32 = a23;
double a33 = Syy - Sxx - Szz - mxEigenV;
double a34 = SyzpSzy;
double a41 = a14;
double a42 = a24;
double a43 = a34;
double a44 = Szz - SxxpSyy - mxEigenV;
double a3344_4334 = a33 * a44 - a43 * a34;
double a3244_4234 = a32 * a44 - a42 * a34;
double a3243_4233 = a32 * a43 - a42 * a33;
double a3143_4133 = a31 * a43 - a41 * a33;
double a3144_4134 = a31 * a44 - a41 * a34;
double a3142_4132 = a31 * a42 - a41 * a32;
double q1 = a22 * a3344_4334 - a23 * a3244_4234 + a24 * a3243_4233;
double q2 = -a21 * a3344_4334 + a23 * a3144_4134 - a24 * a3143_4133;
double q3 = a21 * a3244_4234 - a22 * a3144_4134 + a24 * a3142_4132;
double q4 = -a21 * a3243_4233 + a22 * a3143_4133 - a23 * a3142_4132;
double qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4;
/*
* The following code tries to calculate another column in the adjoint
* matrix when the norm of the current column is too small. Usually this
* commented block will never be activated. To be absolutely safe this
* should be uncommented, but it is most likely unnecessary.
*/
if (qsqr < evec_prec) {
q1 = a12 * a3344_4334 - a13 * a3244_4234 + a14 * a3243_4233;
q2 = -a11 * a3344_4334 + a13 * a3144_4134 - a14 * a3143_4133;
q3 = a11 * a3244_4234 - a12 * a3144_4134 + a14 * a3142_4132;
q4 = -a11 * a3243_4233 + a12 * a3143_4133 - a13 * a3142_4132;
qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4;
if (qsqr < evec_prec) {
double a1324_1423 = a13 * a24 - a14 * a23, a1224_1422 = a12 * a24 - a14 * a22;
double a1223_1322 = a12 * a23 - a13 * a22, a1124_1421 = a11 * a24 - a14 * a21;
double a1123_1321 = a11 * a23 - a13 * a21, a1122_1221 = a11 * a22 - a12 * a21;
q1 = a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322;
q2 = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321;
q3 = a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221;
q4 = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221;
qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4;
if (qsqr < evec_prec) {
q1 = a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322;
q2 = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321;
q3 = a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221;
q4 = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221;
qsqr = q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4;
if (qsqr < evec_prec) {
/*
* if qsqr is still too small, return the identity
* matrix.
*/
rotmat.setIdentity();
return 0;
}
}
}
}
double normq = Math.sqrt(qsqr);
q1 /= normq;
q2 /= normq;
q3 /= normq;
q4 /= normq;
logger.debug("q: " + q1 + " " + q2 + " " + q3 + " " + q4);
double a2 = q1 * q1;
double x2 = q2 * q2;
double y2 = q3 * q3;
double z2 = q4 * q4;
double xy = q2 * q3;
double az = q1 * q4;
double zx = q4 * q2;
double ay = q1 * q3;
double yz = q3 * q4;
double ax = q1 * q2;
rotmat.m00 = a2 + x2 - y2 - z2;
rotmat.m01 = 2 * (xy + az);
rotmat.m02 = 2 * (zx - ay);
rotmat.m10 = 2 * (xy - az);
rotmat.m11 = a2 - x2 + y2 - z2;
rotmat.m12 = 2 * (yz + ax);
rotmat.m20 = 2 * (zx + ay);
rotmat.m21 = 2 * (yz - ax);
rotmat.m22 = a2 - x2 - y2 + z2;
return 1;
}
@Override
public double getRmsd(Point3d[] fixed, Point3d[] moved) {
set(moved, fixed);
return getRmsd();
}
@Override
public Matrix4d superpose(Point3d[] fixed, Point3d[] moved) {
set(moved, fixed);
getRotationMatrix();
if (!centered) {
calcTransformation();
} else {
transformation.set(rotmat);
}
return transformation;
}
/**
* @param fixed
* @param moved
* @param weight
* array of weights for each equivalent point position
* @return weighted RMSD.
*/
public double getWeightedRmsd(Point3d[] fixed, Point3d[] moved, double[] weight) {
set(moved, fixed, weight);
return getRmsd();
}
/**
* The QCP method can be used as a two-step calculation: first compute the
* RMSD (fast) and then compute the superposition.
*
* This method assumes that the RMSD of two arrays of points has been
* already calculated using {@link #getRmsd(Point3d[], Point3d[])} method
* and calculates the transformation of the same two point arrays.
*
* @return transformation matrix as a Matrix4d to superpose moved onto fixed
* point arrays
*/
public Matrix4d superposeAfterRmsd() {
if (!rmsdCalculated) {
throw new IllegalStateException("The RMSD was not yet calculated. Use the superpose() method instead.");
}
getRotationMatrix();
if (!centered) {
calcTransformation();
} else {
transformation.set(rotmat);
}
return transformation;
}
}